Overview

Software systems are increasingly complex and include different actors and components interacting in dynamic environments. Maintaining such systems is a difficult task where human intervention is not feasible. Autonomous computing has explored approaches to optimise systems’ performance by changing their structure, behaviour, or environment variables. These approaches rely on feedback loops that accumulate knowledge from the system interactions to inform autonomous decision-making. However, this knowledge is often limited, constraining the systems’ interpretability and adaptability. This project proposes to explore the capabilities of Large Language Models (LLMs) for self-adaptive systems. The main idea is to replace current autonomous RL-agents with LLM-based agents to make self-adaptive decisions.