Christian’s research focuses on the intersection of machine learning and systems design. He explores how systems perspectives can help develop safe and reliable machine learning technologies, combining data-oriented architectures with techniques from service-oriented computing and self-adaptive systems. He is particularly interested in the application of these methods to smart cities.

Related Publications

Towards Better Data Discovery and Collection with Flow-Based Programming

Andrei Paleyes, Christian Cabrera, Neil D. Lawrence

Neurips Data-Centric AI Workshop (DCAI), :

An Empirical Evaluation of Flow Based Programming in the Machine Learning Deployment Context

Andrei Paleyes, Christian Cabrera, Neil D. Lawrence

1st International Conference on AI Engineering – Software Engineering for AI, :