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What do we do with uncertainty?
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Bayesian Optimisation
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yi = fi + ϵ
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"The need for probability only arises out of uncertainty: It has no place
if we are certain that we know all aspects of a problem. But our lack of
knowledge also must not be complete, otherwise we would have nothing
to evaluate. There is thus a spectrum of degrees of uncertainty. While the
probability for the sixth decimal digit of a number in a table of logarithms
to equal 6 is 1/10 a priori, in reality, all aspects of the corresponding
problem are well determined, and, if we wanted to make the effort, we
could find out its exact value. The same holds for interpolation, for the
integration methods of Cotes or Gauss, etc"
– Henri Poincare, 1896
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Uncertainty Quantification

Aleatoric/Stochastic "Randomness" inherent in system, or noise in our
measurement of system

Epistemic Uncertainty related to our ignorance of a the underlying system

Computational Uncertainty related to finite computation, or intractable
computations
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Data + Model
Compute︷︸︸︷→ Prediction
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Computational Decisions

• Computation is expensive, how much knowledge will I gain from computing
more?

• What should I compute in order to reduce my uncertainty as much as
possible?

• How much should I trust the computation I have done?

• How precise should I do down-stream tasks based on the information from a
specific computation?
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Why Probabilistic Numerics?

"[round-off errors] are strictly very complicated but uniquely defined num-
ber theoretical functions [of the inputs], yet our ignorance of their true
nature is such that we best treat them as random variables."
– Neumann et al., 1947

8



I believe in. . .
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Formalisation [Cockayne et al., 2017]

p(D)

f̂

F

F : p(D) → p(Y|X )
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p(D)

f̂

S

F

A

A ◦ S ≈ F ◦ p(D)
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Bayesian Optimisation
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Bayesian Optimisation

f

x(∗)

S

p(f)

{xi, yi}nt+1

i=1α(x; {xi, yi}nt
i=1, p(f))

argminx f

p(f) ≈
∫
p(f | θ)dp(θ)

argminx{f(xi)}nt+1

i=1
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Numerical Computations1

Linear Algebra given As = y estimate x s.t. Ax = b

Optimisation given ∇f(xi) estimate x s.t. ∇f(x) = 0

Analysis given f(x, t) estimate x(t) s.t. dx = f(x, t)

Quadrature given f(xi) estimate
∫ b

a f(x)dx

1https://www.cs.toronto.edu/~duvenaud/talks/odes_runge_kutta_nips.pdf
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Quantity of Interest
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Integration is a significant numerical problem in many fields of science and
engineering. It is a key step in inference, where it is encountered when
averaging over the many states of the world consistent with observed
data. Indeed, a provocative Bayesian view is that integration is the single
challenge separating us from systems that fully automate statistics. More
speculatively still, such systems may even exhibit artificial intelligence (ai).
– Hennig, Osbourne, Kersting
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Integration

F :=

∫
f(x)dν(x)

• ν(x) is the measure that we are integrating over
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Integration

p(D)︸︷︷︸
F

=

∫
p(D | θ)︸ ︷︷ ︸

f(θ)

p(θ)dθ︸ ︷︷ ︸
dν(θ)

• marginalisation2 is integration over the prior probability measure on the
parameter

2think of computing the evidence
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Quadrature [Cockayne et al., 2017]

f

f̂

S

∫
∑N

k=1
f(xk−1)+f(xk)

2 ∆xk

np.linspace()

A ◦ S ≈
∫

f(x)dx
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Quadrature
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Quadrature
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Numerical Computation

A numerical method estimates a function’s latent property given the result
of computations.
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Numerical Computation

A numerical method estimates a function’s latent property given the result
of computations.

Numerical algorithms
Statistical inference takes data in the form of evaluations of computations

measurements of observed variables and
aims to return predictions of the quantity of interest.
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Numerical Computation

A numerical method estimates a function’s latent property given the result
of computations.

Numerical algorithms
Statistical inference takes data in the form of evaluations of computations

measurements of observed variables and
aims to return predictions of the quantity of interest.

Should we think about computation as inference?
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Use of Computational Uncertainty

p(f̂ | S,A)

Decision which algorithm to use when

Decision efficient use of expensive algorithms

Decision when to stop computation

Decision effect on downstream tasks
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When computation was expensive

Albert Valentionvic Suldin (1924-1996) worked on error minimising
estimators for numerical algorithms, how to design algorithms from
a statistical perspective

Frederick Michael Larkin (1936-1982) incorporating the notion of prior
knowledge into numerical algorithms to make robust calculations
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Bayesian Quadrature



Quantity of interest

F :=

∫ 3

−3

e−(sin(3x))2−x2

︸ ︷︷ ︸
f(x)

dx

• f(x) fully specified and deterministic

• F is deterministic

• F cannot be computed analytically
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Integration
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What we would like

p(F | Y )

• given that I have seen data Y what is my belief about the integral

• allows for "active learning"

• exploration/exploitation etc.
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Emulation
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Quadrature
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Quadrature
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Quadrature
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Quadrature
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Quadrature
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Quadrature
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Model

F :=

∫ 3

−3

e−(sin(3x))2−x2

︸ ︷︷ ︸
f(x)

dx

Knowledge

• f(x) strictly positive ⇒ F > 0

• bounded above by,
f(x) ≤ e−x2

• Therefore,

0 < F <

∫ ∞

−∞
e−x2

dx =
√
π
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Integration

F :=

∫
f(x)dν(x)

• ν(x) is the measure that we are integrating over
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Bayesian Quadrature [O’Hagan, 1991]

p(F, Y ) =

∫
p(F | f)p(Y | f)p(f)df
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Bayesian Quadrature [O’Hagan, 1991]

p(F, Y ) =

∫
p(F | f)p(Y | f)p(f)df

=

∫
δ

(
F −

∫

X
fdx

) N∏

i

δ(yi − f(xi))p(f)df
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Bayesian Quadrature [O’Hagan, 1991]

p

(
Y

F

)
= N

([
mX∫

mX(x)dx

]
,

[
k(X,X)

∫
k(X, x)dx∫

k(x,X)dx
∫ ∫

k(x, x′)dxdx′

])

• We can derive p(F | Y ) through our normal conditioning procedure

• p(F | Y ) = N (µF , kF ) is a uni-variate Gaussian
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Statistical Inference
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Bayesian Quadrature

p

(
Y

F

)
= N

([
mX∫

mX(x)dx

]
,

[
k(X,X)

∫
k(X, x)dx∫

k(x,X)dx
∫ ∫

k(x, x′)dxdx′

])

• We can derive p(F | Y ) through our normal conditioning procedure

• p(F | Y ) = N (µF , kF ) is a uni-variate Gaussian

• p(Y | F ) = N (µY , kY ) is a Gaussian process
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Integral Constrained Samples

F = 4.0 50



Integral Constrained Samples

F = 1.0 51



Information Operator3

Integrand variance α(x) = k(x, x)

Integral Variance Reduction α(x) = kF (X,X)− kF (X, x)

3sometimes called a "Design Rule"
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Choice of Covariance

p(f) = GP
(
0, θ2(min(x, x′)− κ)

)
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Quadrature Rule

E[F ] = Ep(f |Y )

[∫
f(x)dx

]
=

N−1∑

i=1

xi+1 − xi
2

(f(xi+1) + f(xi))

• This is the normal trapezoid rule!!!

• The algorithm is now tied to our belief in the function!!!!

• We can do inference over where to sample!!!!!!!!

54



Quadrature Rule

E[F ] = Ep(f |Y )

[∫
f(x)dx

]
=

N−1∑

i=1

xi+1 − xi
2

(f(xi+1) + f(xi))

• This is the normal trapezoid rule!!!

• The algorithm is now tied to our belief in the function!!!!

• We can do inference over where to sample!!!!!!!!

54



Quadrature Rule

E[F ] = Ep(f |Y )

[∫
f(x)dx

]
=

N−1∑

i=1

xi+1 − xi
2

(f(xi+1) + f(xi))

• This is the normal trapezoid rule!!!

• The algorithm is now tied to our belief in the function!!!!

• We can do inference over where to sample!!!!!!!!

54



Quadrature Rule

E[F ] = Ep(f |Y )

[∫
f(x)dx

]
=

N−1∑

i=1

xi+1 − xi
2

(f(xi+1) + f(xi))

• This is the normal trapezoid rule!!!

• The algorithm is now tied to our belief in the function!!!!

• We can do inference over where to sample!!!!!!!!

54



Trapedzoid Rule

Definition (Trapedzoid Rule)
The trapezoidal rule is the posterior mean estimate for the integral
F =

∫ b

a f(x)dx under any centred Wiener process prior p(f) = GP(0, k) with
k(x, x) = θ2(min(x, x′)− κ)
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The Scientific Principle

Hypothesis

Experiment

Evidence

Data + Model
Compute︷︸︸︷→ Prediction
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Least Squares Regression

Legendre (1805) algorithm that reduces "error"

Gauss (1809) statistical model assuming i.i.d. Gaussian noise
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Factor Analysis

Spearman (1904) proposed an algorithm to extract "factors" from data
Spearman, 1904

Hotelling (1936) concept of factor is clearly defined through a statistical
model Hotelling, 1933
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Why Probabilistic Numerics? scipy.optimize.minimize

Code

def minimize(fun, x0, args=(), method=None,
jac=None, hess=None,
hessp=None, bounds=None,
constraints=(), tol=None,
callback=None, options=None):

method Nelder-Mead, Powell, CG, BFGS, Newton-CG, L-BFGS-B, TNC ,
COBYLA , SLSQP , trust-constr , dogleg , trust-ncg ,
trust-exact , trust-krylov
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Probabilistic Numerics [Hennig et al., 2015]

• There are tons of numerical algorithms for every problem under the sun

• They work really well

• They give different results on the same problem

• what is the prior they implement?
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Neural Networks (Maybe) Evolved to Make Adam The Best Optimizer

In a talk, Olivier Bousquet has described the deep learning community as a giant
genetic algorithm: Researchers in this community are exploring the space of all
variants of algorithms and architectures in a semi-random way. Things that
consistently work in large experiments are kept, the ones not working are
discarded. . . . . . . . . . . . . . . . . . . . .. the community is evolving only one set of
parameters (architectures, initialization strategies, hyperparameters search
algorithms, etc.) keeping most of the time the optimizer fixed to Adam.
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"The Machine Learning Principle"4

"There is a notion of success . . . which I think is novel in the history
of science. It interprets success as approximating unanalyzed data."

– Prof. Noam Chomsky

4Chomsky et al., 1980
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Assumptions: Algorithms

Statistical Learning

AH(S)
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Summary



Summary

• Probabilistic Numerics extends the notion of statistical inference to
computation5

• Computation is the process of extracting a latent property, machine learning
is the statistical process of updating beliefs about latent properties

• Computation is often not "truth" therefore we should quantify our ignorance
about its results

• Why?

• efficiency
• down-stream tasks, uncertainty in computation should be part of decision
• learning/understanding algorithms in relation to problems/data

5these thoughts have been around for a long time
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http://probnumschool.org
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Talk Today

Adaptive probabilistic ODE solvers without adaptive memory
requirements
Adaptive probabilistic solvers for ordinary differential equations (ODEs) have
made substantial progress in recent years but can still not solve
memory-demanding differential equations. In this talk, I review recent
developments in numerically robust fixed-point smoothers and how to use them
for constructing adaptive probabilistic ODE solvers. These new algorithms use
drastically less memory than their predecessors and are the first adaptive
probabilistic numerical methods compatible with scientific computing in JAX .

SS03, 16-17
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Is BO PN?

f

x(∗)

S

p(f)

{xi, yi}nt+1

i=1α(x; {xi, yi}nt
i=1, p(f))

argminx f

argmaxθ p(f)

argminx{f(xi)}nt+1

i=1

Yes it uses a probablistic model as a proxy for decision loop

No the probabilistic model is not over the quantity of interest

70



Is BO PN?

f

x(∗)

S

p(f)

{xi, yi}nt+1

i=1α(x; {xi, yi}nt
i=1, p(f))

argminx f

argmaxθ p(f)

argminx{f(xi)}nt+1

i=1

Yes it uses a probablistic model as a proxy for decision loop

No the probabilistic model is not over the quantity of interest

70



Formalisation

p(D)

f̂

S

p̃(D)

F

A

F

A ◦ S = p̃(D) ≈ p(D)
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