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Re-Cap

• The infeasibility of truth and the search for knowledge

• Parametrise our ignorance/beliefs

• Statistical Inference to update our knowledge from experiment

• Emergent Behaviours

• Simulation and Emulation

1



Re-Cap

• The infeasibility of truth and the search for knowledge

• Parametrise our ignorance/beliefs

• Statistical Inference to update our knowledge from experiment

• Emergent Behaviours

• Simulation and Emulation

1



Re-Cap

• The infeasibility of truth and the search for knowledge

• Parametrise our ignorance/beliefs

• Statistical Inference to update our knowledge from experiment

• Emergent Behaviours

• Simulation and Emulation

1



Re-Cap

• The infeasibility of truth and the search for knowledge

• Parametrise our ignorance/beliefs

• Statistical Inference to update our knowledge from experiment

• Emergent Behaviours

• Simulation and Emulation

1



Re-Cap

• The infeasibility of truth and the search for knowledge

• Parametrise our ignorance/beliefs

• Statistical Inference to update our knowledge from experiment

• Emergent Behaviours

• Simulation and Emulation

1



Simulation and Emulation
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Simulation and Emulation
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Simulation and Emulation
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Simulation and Emulation []
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Active Learning
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Active Learning

Experiment
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Active Learning

Experiment

Analyse
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Active Learning

Experiment

Analyse

Design
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The Scientific Principle

Hypothesis

Experiment

Evidence
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Finding Extremum of a function
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Today

Black-Box Optimisation how can we find the extremum of an explicitly
unknown function?

Surrogate Models how can we build a model as a surrogate for the unknown
function?

Sequential decision making how can we come up with a strategy for
sequentially exploring the function?
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Bayesian Optimisation



Black-box Optimisation

x(∗) = argmin
x∈X

f(x)

• X is a bounded domain

• f is explicitly unknown

• Evaluations of f may be noisy

• Evaluations of f is expensive
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Random Search [Brochu et al., 2010]

• Random Search
f(x(−)) ≤ f(x(∗))− ϵ

• Lipschitz Continuity

∥f(x1)− f(x2)∥ ≤ C∥x1 − x2∥

• Requires
(
C
2ϵ

)d
evaluations on a d -dimensional hypercube

• Surrogate model p(f)
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Gaussian Process Surrogate

• allows for principled priors and narrow priors

• provides belief over the whole domain
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Posterior Search: Random
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Posterior Search: Random

20



Posterior Search: Min
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Posterior Search: Min
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Exploration and Explotation

Exploitation use the knowledge that we currently have

Exploration try to gain new knowledge by trying new things
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Surrogate Uncertainty
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Surrogate Uncertainty
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Acquisition Function

xn+1 = argmax
x∈X

α(x; {xi, yi}ni=1,Mn)

• Formulate a sequential decision problem
• This will work well if α(x)

• is cheap to compute
• balances exploration and exploitation
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Thompson Sampling [Thompson, 1933]

−α(x; {xi, yi}ni=1,Mn) ∼ p(f | {xi, yi}ni=1)
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Thompson Sampling
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Thompson Sampling
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Upper Confidence Bound [Cox et al., 1997]

• Acquisition Function

α(x; {xi, yi}ni=1,Mn) = −µ(x; {xi, yi}ni=1) + βσ(x; {xi, yi}ni=1)
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Upper Confidence Bound
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Utility

• We can come up with lots of heuristics of how to define acquisition functions

• Define a function that defines the utility of observing each location

u(x, f(x(∗)),Mn)

• Define the acquisition function as the expected utility

α(x; {xi, yi}ni=1,Mn) = Ep(f)[u(x)]

=

∫
u(x, f(x(∗)),Mn)p(f | {xi, yi}ni=1)df
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Probability of Improvement [Kushner, 1963]

• Utility Function

u(x) =

{
0 f(x) > f(x(∗))

1 f(x) ≤ f(x(∗))

• Acquisition Function

α(x;{xi, yi}ni=1, f(x
(∗)),Mn) = E[u(x)] = p(f(x) ≤ f(x(∗)))

=

∫ f(x(∗))

−∞
N (f | µ(x), K(x, x)) df

= Φ
(
f(x(∗)) | µ(x), K(x, x)

)

57



Probability of Improvement [Kushner, 1963]

• Utility Function

u(x) =

{
0 f(x) > f(x(∗))

1 f(x) ≤ f(x(∗))

• Acquisition Function

α(x;{xi, yi}ni=1, f(x
(∗)),Mn) = E[u(x)] = p(f(x) ≤ f(x(∗)))

=

∫ f(x(∗))

−∞
N (f | µ(x), K(x, x)) df

= Φ
(
f(x(∗)) | µ(x), K(x, x)

)

57



Probability of Improvement

58



Probability of Improvement

59



Probability of Improvement

60



Probability of Improvement

61



Probability of Improvement

62



Probability of Improvement

63



Probability of Improvement

64



Probability of Improvement

65



Expected Improvement Mockus et al., 1978

• Utility Function
u(x) = max(0, f(x(∗))− f(x))

• Acquisition Function

α(x;{xi, yi}ni=1, f(x
(∗)),Mn) = E[u(x)]

=

∫ f(x(∗))

−∞
(f(x(∗))− f)N (f | µ(x), K(x, x)) df

= (f(x(∗))− µ(x))Φ
(
f(x(∗)) | µ(x), K(x, x)

)
+K(x, x)N

(
f(x(∗)) | µ(x), K(x, x)

)
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Expected Improvement
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BO in Practice

Task 1 encode your knowledge about the function in the GP prior

Task 2 randomly sample some data

Task 3 specify your acquition function

Task 4 evaluate and maximise the acquisition function

Task 5 add new data to model and re-estimate hyperparameters

Loop 4-5 till budget is gone1

1till they open the door to the exam.
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Bayesian Optimisation in Practice



Academia vs. Industry
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Challenges: Initial Experiments [Bodin et al., 2020]

Input

O
b
je
ct
iv
e
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Challenges: Initial Experiments [Bodin et al., 2020]

2 10 20 30 40 50
number of observations so far

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

sim
pl

e 
re

gr
et

Corrupted holder table 2d
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Hyper-parameters

• Fixed data

θ̂ = argmaxθ p(y | xθ)
p(f∗ | y,x, x∗, θ = θ̂)

• Active setting

p(f∗ | y,x, x∗) =
∫

p(f∗ | y,x, x∗, θ)p(θ)
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Challenges: Function is just a proxy

Input
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Challenges: High Dimensional Structures

k(xi,xj) = exp(−xT
i xj

ℓ2

81



Challenges: Greedy Acquisition
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Summary



Summary

• GPs are quite useful surrogates!

• Degrees of beliefs are really useful

• The uncertainty allows us to design rich strategies for how to aquire data

• The factorisation of uncertainty allows us to describe search strategies in
simple acquisition functions
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Individual Submission

• I have reluctantly made another Jupyter Notebook

• It will be online by the end of the day

• Similar to the material in the PDF

• Deadline Friday 7rd of November at 16:00
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Uncertainty Quantification/Factorisation
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Uncertainty Quantification

Aleatoric/Stochastic "Randomness" inherent in system, or noise in our
measurement of system

Epistemic Uncertainty related to our ignorance of a the underlying system
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Uncertainty for Decision Making
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eof
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