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Parametrics vs. Non-parametrics
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Non-parametrics vs Parametrics
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Gaussian Processes: Formalism
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• Co-variance and mean-function both have parameters
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Semantics

p(✓ | y) =
p(y | ✓)p(✓)Z
p(y | ✓)p(✓)d✓

| {z }
p(y)

Likelihood How much evidence is there in the data for a specific hypothesis

Prior What are my beliefs about different hypothesis

Posterior What is my updated belief after having seen data

Evidence What is my belief about the data
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Learning
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Model Selection MacKay, 1991

7



Learning

✓⇤ = argmax✓ p(D | ✓)
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Marginal Log-likelihood

log p(y | X,✓) = log

Z
p(y | f)p(f | X,✓)d✓
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Today

p(y) =

Z
p(y | f)p(f)df

Code

import numpy as np

.....
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On previous page this is dtheta, should be df (but couldn’t highlight there!).
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Software Packages
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Numerical Stability



Determinant

1

2
log det

�
k(X,X) + �

�1I
�

Code

0.5*np.log(np.linalg.det(K+1/beta*np.eye(K.shape[0])))
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Co-Variance Matrices
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Eigen-decomposition

14



Cholesky Decomposition

K = LLT

• Factorisation of a Hermitian and Positive-Semi-Definite Matrix into the
product of two lower-triangular matrices
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Determinant from Cholesky

log detK = log det
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Inverse

yTK�1y

• Matrix inverse have cubic complexity O(n3)

• Finding the general inverse is numerically tricky

• The matrix is structured and we do not need the explicit matrix
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Inverse Using Cholesky

yTK�1y = yTLLT�1
y

= yT �L�1
�T

L�1y

=
�
L�1y
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= zTz.
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Inverse Using Cholesky

yTK�1y = yTLLT�1
y

= yT �L�1
�T

L�1y

=
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L�1y

�T
L�1y

= zTz.Lz = y
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Inverse using Cholesky

`1,1z1 = y1

`2,1z1 + `2,2z2 = y2
...

`n,1z1 + `n,2z2 + . . . + `n,nzn = yn,

• we can easily solve z1 =
y1
`1,1

and z2 =
y1�`2,1z1

`2,2
, etc.

• scipy.linalg.cho_solve
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Numerically Stable Computations

• A numerical method is an "approximation"

• Our computers have finite precision

• Even "worse" they have floating finite precision

• Keep the computer in mind when formulating your problem

• There is a "big" forgotten step going from math to code, don’t forget your
numerical analysis
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Intractabilities



Unsupervised Learning

yi

fi ✓

x

D

p(y|x) =

Z
p(y | f)p(f)df

yi

fi ✓

x

D

p(y) =

Z
p(y | f, x)p(f | x)p(x)dfdx
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NDF Campbell et al. (July 2014). “Learning a manifold of fonts.” In:
ACM Transactions on Graphics (TOG) 33.4, p. 91
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Functions
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning

25



Gaussian Process Latent Variable Model Lawrence, 2004

Regression there are infinite number of possible functions that connects the
data equally well. A GP provides a measure over these solutions that
makes the problem "well-posed".

Unsupervised Learning there are infinite number of possible combinations of
input locations and functions that generate the data equally well. A
GP and a latent space prior jointly provides a measure over these
solutions to make the problem "well-posed"
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Integration

p(y) =

Z
p(y | f)p(f | x)p(x)dfdx

• This integral is analytically intractable
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Approximate Inference



Machine Learning

p(y) =

Z
p(y | x)p(x)dx
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Variational Inference

x

y y

x

y

p(y) =

Z

x
p(y|x)p(x) =

p(y|x)p(x)

p(x|y)

x

y

✓

q✓(x) ⇡ p(x|y)
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Variational Bayes

p(y)
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Variational Bayes

log p(y)
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Variational Bayes

log p(y) = log p(y) +

Z
log

p(x|y)

p(x|y)
dx
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Variational Bayes

log p(y) = log p(y) +

Z
log

p(x|y)

p(x|y)
dx
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Z
q(x)log p(y)dx+
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p(x|y)
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Variational Bayes
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Variational Bayes
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Variational Bayes
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Variational Bayes
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Jensen Inequality

f(

Z
g dx) 

Z
f � g dx,
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The "posterior" term

Z
q(x) log

q(x)

p(x|y)
dx
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The "posterior" term

Z
q(x) log

q(x)

p(x|y)
dx = �

Z
q(x) log

p(x|y)

q(x)
dx
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The "posterior" term

Z
q(x) log

q(x)

p(x|y)
dx = �

Z
q(x) log

p(x|y)

q(x)
dx

� log
Z

p(x|y)dx

= log1 = 0
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The "posterior" term

Z
q(x) log

q(x)

p(x|y)
dx
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The "posterior" term

Z
q(x) log

q(x)

p(x|y)
dx = {Lets assume that q(x) = p(x|y)}
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The "posterior" term

Z
q(x) log

q(x)

p(x|y)
dx = {Lets assume that q(x) = p(x|y)}

=

Z
p(x|y) log

p(x|y)

p(x|y)| {z }
=1

dx
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The "posterior" term

Z
q(x) log

q(x)

p(x|y)
dx = {Lets assume that q(x) = p(x|y)}

=

Z
p(x|y) log

p(x|y)

p(x|y)| {z }
=1

dx

= 0
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Kullback-Leibler Divergence

KL(q(x)||p(x|y)) =

Z
q(x) log

q(x)

p(x|y)
dx

• KL(q(x)||p(x|y)) � 0

• KL(q(x)||p(x|y)) = 0 , q(x) = p(x|y)

• Measure of divergence between distributions

• Not a metric (not symmetric)
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Variational Bayes

log p(y) =

Z
q(x)log

1

q(x)
dx+

Z
q(x)log p(x, y)dx+

Z
q(x) log

q(x)

p(x|y)
dx

� �

Z
q(x)log q(x)dx+

Z
q(x)log p(x, y)dx

• The Evidence Lower BOnd

• Tight if q(x) = p(x|y)
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Deterministic Approximation

log p(y)

L(q)

KL(q||p)
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ELBO

log p(y) � �

Z
q(x)log q(x)dx+

Z
q(x)log p(x, y)dx

= Eq(x) [log p(x, y)]�H(q(x)) = L(q(x))

• if we maximise the ELBO we,
• find an approximate posterior
• lower bound the marginal likelihood

• maximising p(y) is learning

• finding q(x) ⇡ p(x|y) is prediction
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How to choose Q?

L(q(x)) = Eq(x) [log p(x, y)]�H(q(x))

• We have to be able to compute an expectation over the joint distribution

• The second term should be trivial
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Gaussian Processes Q
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Gaussian Processes Q
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Gaussian Processes Q
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Lower Bound 1

p(f, u | x, z)

• Add another set of samples from the same prior

• Conditional distribution

1Titsias et al., 2010
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Lower Bound 1

p(f, u | x, z) = p(f | u, x, z)p(u | z)

= N (f | KfuK
�1
uu u,Kff �KfuK

�1
uuKuf )N (u | 0, Kuu)

• Add another set of samples from the same prior

• Conditional distribution

1Titsias et al., 2010
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Lower Bound

p(y, f, u, x | z) = p(y | f)p(f | u, x)p(u | z)p(x)

• we have done nothing to the model, just project an additional set of
marginals from the GP

• however we will now interpret u and z not as random variables but
variational parameters

• i.e. the variational distribution q(·) is parametrised by these
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Lower Bound

• Variational distributions are approximations to intractable posteriors,

q(u) ⇡ p(u | y, x, z, f)

q(f) ⇡ p(f | u, x, z, y)

q(x) ⇡ p(x | y)

• Bound is tight if u completely represents f i.e. u is sufficient statistics for f

q(f) ⇡ p(f | u, x, z, y) = p(f | u, x, z)
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Lower Bound

L =

Z

x,f,u
q(f)q(u)q(x)log

p(y, f, u | x, z)p(x)

q(f)q(u)q(x)

• Assume that u is sufficient statistics of f

q(f) = p(f | u, x, z)
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Lower Bound
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Lower Bound

L̃ =

Z

x,f,u
q(f)q(u)q(x)log

p(y | f)p(f | u, x, z)p(u | z)p(x)

q(f)q(u)q(x)

46



Lower Bound

L̃ =

Z

x,f,u
q(f)q(u)q(x)log

p(y | f)p(f | u, x, z)p(u | z)p(x)

q(f)q(u)q(x)

=

Z

x,f,u
p(f | u, x, z)q(u)q(x)log

p(y | f)p(f | u, x, z)p(u | z)p(x)

p(f | u, x, z)q(u)q(x)

46



Lower Bound

L̃ =

Z

x,f,u
q(f)q(u)q(x)log

p(y | f)p(f | u, x, z)p(u | z)p(x)

q(f)q(u)q(x)

=

Z

x,f,u
p(f | u, x, z)q(u)q(x)log

p(y | f)p(f | u, x, z)p(u | z)p(x)

p(f | u, x, z)q(u)q(x)

46



Lower Bound

L̃ =

Z

x,f,u
q(f)q(u)q(x)log

p(y | f)p(f | u, x, z)p(u | z)p(x)

q(f)q(u)q(x)

=

Z

x,f,u
p(f | u, x, z)q(u)q(x)log

p(y | f)p(f | u, x, z)p(u | z)p(x)

p(f | u, x, z)q(u)q(x)

=

Z

x,f,u
p(f | u, x, z)q(u)q(x)log

p(y | f)p(u | z)p(x)

q(u)q(x)

46



Lower Bound
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= Ep(f |u,x,z)[p(y | f)]� KL(q(u) k p(u | z))� KL(q(x) k p(x))
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Lower Bound

L = Ep(f |u,x,z)[p(y | f)]� KL(q(u) k p(u | z))� KL(q(x) k p(x))

• Expectation tractable (for some co-variances) Titsias et al., 2010

• Stochastic inference Hensman et al., 2013

• Importantly p(x) only appears in KL(· k ·) term!
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Interesting Models

yi

fi ✓

x

D yi

f (2) ✓2

f (1) ✓1

x

y1 y2 y3

f1 f2 f3

x1 x2 x3
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Summary



Summary

• Hopefully this gave you a flavour of the "practical" part of working with
probabilistic models

• You are not expected to know this, but having it in the back of your mind

• Remember the no-free lunch, any result is relative to the assumptions that
you put in

• Computations and implementations makes up a huge part of your
assumptions
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