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Parametrics vs. Non-parametrics
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Non-parametrics vs Parametrics
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Gaussian Processes: Formalism

f1 p(xy) k(xy,z1) k(xy,z9) ... k(xi,zNn)

fa w(z2) k(xzo,x1) k(xo,x2) ... k(za,2N)
=N || : ] S

fn wu(zn) k(zn,x1) k(zn,z2) ... k(zn,zN)

e Co-variance and mean-function both have parameters



Semantics

p(0|y) = py | 9)p(9)
/ p(y | 0)p(0)do

h y
-

p(y)

Likelihood How much evidence is there in the data for a specific hypothesis
Prior What are my beliefs about different hypothesis
Posterior What is my updated belief after having seen data
Evidence What is my belief about the data



Learning
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Model Selection MacKay,



0" = argmax, p(D | 0)



Marginal Log-likelihood

df
logp(y | X,0) =log [ p(y | f)p(f | X,0)d0

Lyt (XX 4 571D) Ty = Llogdet (X, X) + 671D
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Neil Lawrence
df


p(y) = /p(y | f)p(f)‘ import numpy as np
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Neil Lawrence
On previous page this is dtheta, should be df (but couldn’t highlight there!).

Neil Lawrence
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Numerical Stability



%log det (k(X,X) + 87'1)

0.5*np.log(np.linalg.det (K+1/beta*np.eye(K.shape[0])))
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Eigen-decomposition
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Cholesky Decomposition

K=LL"T

e Factorisation of a Hermitian and Positive-Semi-Definite Matrix into the
product of two lower-triangular matrices
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Determinant from Cholesky

log det K = log det (LL") =
log (det L)? =

N 2 N
o (m) -y e
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Inverse

y Ky

e Matrix inverse have cubic complexity O(n?)
e Finding the general inverse is numerically tricky

e The matrix is structured and we do not need the explicit matrix
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Inverse Using Cholesky

_yT (L—l) L 1y
= (L7'y) L7y
T
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Inverse Using Cholesky
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Inverse using Cholesky

liaz = un
ly1z1 + la22o = Y
En,lzl + en,2z2 G oo T én,nzn = Yn,
. oy _ yi—feaz
[} = A — <2 Tl
we can easily solve z; i and 29 Ta o et

e scipy.linalg.cho_solve
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Numerically Stable Computations

e A numerical method is an "approximation"
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Numerically Stable Computations

e A numerical method is an "approximation"

e Our computers have finite precision
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Numerically Stable Computations

e A numerical method is an "approximation"
e Our computers have finite precision

e Even "worse" they have floating finite precision
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Numerically Stable Computations

A numerical method is an "approximation"

Our computers have finite precision

e Even "worse" they have floating finite precision

Keep the computer in mind when formulating your problem
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Numerically Stable Computations

A numerical method is an "approximation"

Our computers have finite precision

e Even "worse" they have floating finite precision

Keep the computer in mind when formulating your problem

There is a "big" forgotten step going from math to code, don't forget your

numerical analysis
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Intractabilities




Unsupervised Learning

. )
D=0 (k)
® @

p(yle) = / Pl | p(@as p(y) = / p(y | £ 2)p(f | 2)p(z)d fda
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Please drag the black and white circle around the heat map to explore the 2D font manifold!

Unlikely Probability Likely

NDF Campbell et al. (July 2014). “Learning a manifold of fonts.” In:

ACM Transactions on Graphics (TOG) 33.4, p. 91
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Functions
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning

25



Unsupervised Learning
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Gaussian Process Latent Variable Model Lawrence,

Regression there are infinite number of possible functions that connects the
data equally well. A GP provides a measure over these solutions that
makes the problem "well-posed".
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Gaussian Process Latent Variable Model Lawrence,

Regression there are infinite number of possible functions that connects the
data equally well. A GP provides a measure over these solutions that
makes the problem "well-posed".

Unsupervised Learning there are infinite number of possible combinations of
input locations and functions that generate the data equally well. A
GP and a latent space prior jointly provides a measure over these
solutions to make the problem "well-posed"
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Integration

p(y) = / py | fp(f | z)p(z)dfdz

e This integral is analytically intractable
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Approximate Inference




Machine Learning

p(y) = / p(y | £)p(z)dz
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Variational Inference

..L ®

p(y) = / ) =

p(xly)
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Variational Bayes

p(y)
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Variational Bayes

log p(y)
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Variational Bayes

p(zly)
p(aly) ™

log p(y) = log p(y) + / o
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Variational Bayes

p(zly)
p(zly)

_ 9B x)lo p(xky) &
— /q(x)log p(y)d +/q( log p(l’|y)d

dz

log p(y) = log p(y) + / log
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Variational Bayes

log p(y) = log p(y) + / log igz:z; dz

_ / oo = / g(z)log BEW g,

p(z]y)
B o PEWPY) 4
_/Q( Jlog p(z]y) ¢
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Variational Bayes

log p(y) = log p(y) + / log gg:zi dz

_ X X )10, p(xly) L
— /q(a:)log p(y)d +/q( Jlog p(xly)d

- /q(x)log ZMd:zc = /q(x)log p(x,y)dx

p(zly) p(zly)
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Variational Bayes

g p(y) = log o)+ [ log gg :3@

= /q(x)log p(y )dx—i—/q(m)log p(xé?dx
o payel) pey)
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Variational Bayes

log p(y) = log p(y) + /10 zg Iy§

) ) e PEY) 4
_/q( )log p( )d +/‘Z( ) gp(ac|y)d

o | o S
?q log d:z:—i—/q( )log p(x,y)dx—l—?q(x) log p(;w)dx

q(z)log —dx +/ (x)log p(z,y)dz + [ q(z) log p(i(;‘;)dx

qQ\x
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Jensen Inequality

o= —
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The "posterior" term

q(z)
/ 4() log p(zly) e
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The "posterior" term

0@ ) loe PEY) 4
/q<x>log i /q(>1g a
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The "posterior" term

[ o108 22— — [ g(a) 10g 2

p(m|y) q(x)
> 10g/p(x|y)dg:
=logl =0
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The "posterior" term

q(z)
/ 4() log p(zly) e
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The "posterior" term

/q(:z:) log pcg:(j;) dx = {Lets assume that ¢(x) = p(z|y)}
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The "posterior" term

/q(.r) log a(z) dx = {Lets assume that ¢(z) = p(z|y)}

p(zly)
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——
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The "posterior" term

/q(x) log a(z) da = {Lets assume that ¢(x) = p(z|y)}

p(cly)
p(ely)
/ (=ly) log ) O
——

=1
=0
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Kullback-Leibler Divergence

KL(g(o)llpaly) = [ ala) o 27

KL(q()||p(zly)) = 0
KL(q(z)|lp(zly)) = 0 < q(x) = p(zy)
Measure of divergence between distributions

Not a metric (not symmetric)
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Variational Bayes

log p(y) = / q(z)log s / q(z)log p(z,y)dz + / q(z) log A4z) g,

q(z) p(zly)

> —/q(m)log q(z)dz + /q(x)log p(z,y)dz

e The Evidence Lower BOnd
o Tight if ¢(z) = p(x[y)
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Deterministic Approximation

log p(y) A yy

KL(ql|p)

L(q)
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ELBO

log p(y) > — / q(x)log q(z)dx + / q(x)log p(z, y)dw

= Ey() [log p(z, )] — H(q(x)) = L(q(x))

o if we maximise the ELBO we,

e find an approximate posterior
e lower bound the marginal likelihood

e maximising p(y) is learning
e finding q(z) = p(z|y) is prediction
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How to choose Q7

L(q(x)) = Eq) [log p(z,y)] — H(q(x))

e We have to be able to compute an expectation over the joint distribution

e The second term should be trivial
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Gaussian Processes Q
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Gaussian Processes Q
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Gaussian Processes Q
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p(f,ulz,2)

e Add another set of samples from the same prior

e Conditional distribution

1Titsias et al., 2010
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p(f,u @, z) =p(f | u,z, 2)p(u | 2)

e Add another set of samples from the same prior

e Conditional distribution

1Titsias et al., 2010
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p(fiulz,2) =p(f | u,z,2)p(u | 2)
= N(f | K€ u Ky = Kpu Ky Kup)N (u | 0, Kow)

e Add another set of samples from the same prior

e Conditional distribution

1Titsias et al., 2010
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py, frw, x| 2) =ply | fp(f | u,z)p(u | 2)p(x)

e we have done nothing to the model, just project an additional set of
marginals from the GP

e however we will now interpret u and z not as random variables but
variational parameters

e i.e. the variational distribution ¢(-) is parametrised by these
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e Variational distributions are approximations to intractable posteriors,

q(u) = p(u|y,z,z f)
q(f) = p(f [u,z, 2,y)
q(z) ~ p(z | y)

Q
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e Variational distributions are approximations to intractable posteriors,

q(u) = p(u|y,z,z f)
q(f) = p(f [u,z, 2,y)
q(z) ~ p(z | y)

Q

e Bound is tight if u completely represents f i.e. w is sufficient statistics for f

q(f) = p(f | u, 2, 2,y) =p(f | u,, 2)
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py, f,u |z, 2)p(x)
£= / Welog = s
p(y | Hp(f | w2, plu | 2)p(z)
/w,f,uQ( Ja(w)a(e)log = S

e Assume that u is sufficient statistics of f

q(f) = p(f | u, 2, 2)
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(y | Hp(f | u,z,2)p(u | 2)p(z)
q(f)q(u)q(x)

[ = / N o(Fa(w)g(z)log”
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(y | £)p(f | u,z,2)p(u | 2)p(x)

q(f)a(u)q(z)

(y | fp(f | u,z,2)p(u | 2)p(z)
p(f |,z 2)q(u)q(x)

[ = / N o(Fa(w)g(z)log?

/ ] u, 2, 2)q()g(x)log?
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(y | £)p(f | u,z,2)p(u | 2)p(x)

q(f)a(u)q(z)

(y | fp(f | u,z,2)p(u | 2)p(z)
p(f |z, 2)q(u)q(x)

[ = / N o(Fa(w)g(z)log?

/ ] u, 2, 2)q()g(x)log?
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ol LB | el | 2,
Lo I)aa(w)log P ErE)

= ] o(F | w5, 2)q(w)q(z)log PP [0 2, 2)p(u | 2)p(w)

=)

o p(f | u,z,2)q(u)q(x)

py | f)p(u | 2)p(x)
N p(f | u, 2, 2)q(u)q(x)log @)
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ol LB | et | 2
= / Ja(@)log (D)
p(y |

p(f | u,,2)q(u)q(x)log

L.
[ a1 2,2, 2)q() g @) log P

7.f7u

= Ep(flua) [Py | £)] = KL(q(w) || p(u | Z)) KL( (@) || p(x))
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L = Ep(flua) [Py | /)] = KL(g(w) [| p(u | 2)) — KL(g(z) || p(x))

e Expectation tractable (for some co-variances) Titsias et al., 2010
e Stochastic inference Hensman et al., 2013

e Importantly p(x) only appears in KL(- || -) term!
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Summary




Hopefully this gave you a flavour of the "practical" part of working with

probabilistic models

You are not expected to know this, but having it in the back of your mind

Remember the no-free lunch, any result is relative to the assumptions that

you put in

Computations and implementations makes up a huge part of your

assumptions
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