Machine Learning and the Physical World
Lecture 2 : Quantification of Beliefs

Carl Henrik Ek - che29@cam.ac.uk

10th of October, 2023
http://carlhenrik.com

Today

- Why understanding our ignorance is not just desirable but necessary for learning

Today

- Why understanding our ignorance is not just desirable but necessary for learning
- Why knowledge is subjective or relative

Today

- Why understanding our ignorance is not just desirable but necessary for learning
- Why knowledge is subjective or relative
- Re-cap of linear regression

Inductive Reasoning

Inductive Reasoning

"In inductive inference, we go from the specific to the general. We make many observations, discern a pattern, make a generalization, and infer an explanation or a theory"

- Wassertheil-Smoller

Inductive Reasoning II

Inductive Reasoning

Unlike deductive arguments, inductive reasoning allows for the possibility that the conclusion is false, even if all of the premises are true.

The Scientific Principle

"The Machine Learning Principle" ${ }^{1}$

"There is a notion of success ... which I think is novel in the history of science. It interprets success as approximating unanalyzed data."

- Prof. Noam Chomsky

Learning Theory

- \mathcal{H} space of Hypothesis

Learning Theory

- H space of Hypothesis
- \mathcal{A} learning algorithm

Learning Theory

- \mathcal{H} space of Hypothesis
- \mathcal{A} learning algorithm
- $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

Learning Theory

- H space of Hypothesis
- \mathcal{A} learning algorithm
- $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
- $\mathcal{S} \sim P(\mathcal{X} \times \mathcal{Y})$

Learning Theory

- H space of Hypothesis
- \mathcal{A} learning algorithm
- $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
- $\mathcal{S} \sim P(\mathcal{X} \times \mathcal{Y})$
- $\ell\left(\mathcal{A}_{\mathcal{H}}(\mathcal{S}), x, y\right)$ loss function

Statistical Learning

$$
e(\mathcal{S}, \mathcal{A}, \mathcal{H})=\mathbb{E}_{P(\{\mathcal{X}, \mathcal{Y}\})}\left[\ell\left(\mathcal{A}_{\mathcal{H}}(\mathcal{S}), x, y\right)\right]
$$

Statistical Learning

$$
\begin{aligned}
e(\mathcal{S}, \mathcal{A}, \mathcal{H}) & =\mathbb{E}_{P(\{\mathcal{X}, \mathcal{Y}\})}\left[\ell\left(\mathcal{A}_{\mathcal{H}}(\mathcal{S}), x, y\right)\right] \\
& =\int \ell\left(\mathcal{A}_{\mathcal{H}}(\mathcal{S}), x, y\right) p(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Statistical Learning

$$
\begin{aligned}
\overbrace{e(\mathcal{S}, \mathcal{A}, \mathcal{H})}^{\text {True Risk }} & =\mathbb{E}_{P(\{\mathcal{X}, \mathcal{y}\})}\left[\ell\left(\mathcal{A}_{\mathcal{H}}(\mathcal{S}), x, y\right)\right] \\
& =\int \ell\left(\mathcal{A}_{\mathcal{H}}(\mathcal{S}), x, y\right) p(x, y) \mathrm{d} x \mathrm{~d} y \\
& \approx \underbrace{\frac{1}{M} \sum_{n=1}^{M} \ell\left(\mathcal{A}_{\mathcal{H}}(\mathcal{S}), x_{n}, y_{n}\right)}_{\text {Empirical Risk }}
\end{aligned}
$$

No Free Lunch

We can come up with a combination of $\{\mathcal{S}, \mathcal{A}, \mathcal{H}\}$ that are equvivalent under the empirical risk that makes true risk take an arbitary value

Assumptions: Algorithms

Statistical Learning

$$
\mathcal{A}_{\mathcal{H}}(\mathcal{S})
$$

Assumptions: Biased Sample

Statistical Learning

$$
\mathcal{A}_{\mathcal{H}}(\mathcal{S})
$$

Assumptions: Hypothesis space

Statistical Learning

$$
\mathcal{A}_{\mathcal{H}}(\mathcal{S})
$$

The Scientific Principle

Example

Example

Example

Example

Example

Data and Beliefs

Example

Encoding Beliefs

Manipulation of Beliefs

Sum Rule

$$
p(y)=\left\{\begin{array}{l}
\sum_{\forall \theta \in \Theta} p(y, \theta) \\
\int p(y, \theta) \mathrm{d} \theta
\end{array}\right.
$$

Product Rule

$$
p(y, \theta)=p(y \mid \theta) p(\theta)
$$

Bayes' "Rule"

$$
p(y, \theta)=p(y \mid \theta) p(\theta)
$$

Bayes' "Rule"

$$
\begin{aligned}
& p(y, \theta)=p(y \mid \theta) p(\theta) \\
& p(y, \theta)=p(\theta \mid y) p(y)
\end{aligned}
$$

Bayes' "Rule"

$$
\begin{aligned}
p(y, \theta) & =p(y \mid \theta) p(\theta) \\
p(y, \theta) & =p(\theta \mid y) p(y) \\
p(\theta \mid y) p(y) & =p(y \mid \theta) p(\theta)
\end{aligned}
$$

Bayes' "Rule"

$$
\begin{aligned}
p(y, \theta) & =p(y \mid \theta) p(\theta) \\
p(y, \theta) & =p(\theta \mid y) p(y) \\
p(\theta \mid y) p(y) & =p(y \mid \theta) p(\theta) \\
p(\theta \mid y) & =\frac{p(y \mid \theta) p(\theta)}{p(y)}
\end{aligned}
$$

Bayes' "Rule"

$$
\begin{aligned}
p(y, \theta) & =p(y \mid \theta) p(\theta) \\
p(y, \theta) & =p(\theta \mid y) p(y) \\
p(\theta \mid y) p(y) & =p(y \mid \theta) p(\theta) \\
p(\theta \mid y) & =\frac{p(y \mid \theta) p(\theta)}{p(y)} \\
& =\frac{p(y \mid \theta) p(\theta)}{\int p(y \mid \theta) p(\theta) \mathrm{d} \theta}
\end{aligned}
$$

Semantics

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{\int p(y \mid \theta) p(\theta) \mathrm{d} \theta}
$$

Likelihood How much evidence is there in the data for a specific hypothesis

Semantics

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{\int p(y \mid \theta) p(\theta) \mathrm{d} \theta}
$$

Likelihood How much evidence is there in the data for a specific hypothesis
Prior What are my beliefs about different hypothesis

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{\int p(y \mid \theta) p(\theta) \mathrm{d} \theta}
$$

Likelihood How much evidence is there in the data for a specific hypothesis
Prior What are my beliefs about different hypothesis
Posterior What is my updated belief after having seen data

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{\int p(y \mid \theta) p(\theta) \mathrm{d} \theta}
$$

Likelihood How much evidence is there in the data for a specific hypothesis
Prior What are my beliefs about different hypothesis
Posterior What is my updated belief after having seen data
Evidence What is my belief about the data

Marginalisation

$$
p(\mathcal{D})=\int p(\mathcal{D} \mid \theta) p(\theta) \mathrm{d} \theta
$$

Marginalisation

$$
p(\mathcal{D})=\int p(\mathcal{D} \mid \theta) p(\theta) \mathrm{d} \theta
$$

Marginalisation

$$
p(\mathcal{D})=\int p(\mathcal{D} \mid \theta) p(\theta) \mathrm{d} \theta
$$

Marginalisation

$$
p(\mathcal{D})=\int p(\mathcal{D} \mid \theta) \underbrace{p(\theta) \mathrm{d} \theta}_{\mathrm{d} t(\theta)}
$$

Marginalisation

Marginalisation

Marginalisation

Laplace, 1814

"One sees, from this Essay, that the theory of probabilities is basically just common sense reduced to calculus; it makes one appreciate with exactness that which accurate minds feel with a sort of instinct, often without being able to account for it."

- Simon Laplace

Parametrising our Ignorance

Data Today
Model Today and Thursday

Computation Week 4

Linear Regression

Linear Regression

- Linear function in both parameters and data

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+w_{1} x_{1}+\ldots w_{D} x_{D}=\mathbf{w}^{\mathrm{T}} \mathbf{x}+w_{0}=\{D=1\} w_{0}+w_{1} \cdot x
$$

Linear Regression

- Linear function only in parameters

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+\sum_{j=1}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$

Linear Regression

$$
y(\mathbf{x}, \mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{x}=\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}
1 \\
x
\end{array}\right]
$$

- Given observations of data pairs $\mathcal{D}=\left\{y_{i}, \mathbf{x}_{i}\right\}_{i=1}^{N}$ can we infer what \mathbf{w} should be

Linear Regression

Task 1 define a likelihood (model)

Linear Regression

Task 1 define a likelihood (model)
what output do I consider likely under a given hypothesis?

Task 1 define a likelihood (model)
what output do I consider likely under a given hypothesis?
Task 2 define an assumption/belief over all hypothesis (model)

Task 1 define a likelihood (model)
what output do I consider likely under a given hypothesis?
Task 2 define an assumption/belief over all hypothesis (model) what types of models do I think are more probable than others

Task 1 define a likelihood (model)
what output do I consider likely under a given hypothesis?
Task 2 define an assumption/belief over all hypothesis (model) what types of models do I think are more probable than others
Task 3 update my belief with new observations (data)

Task 1 define a likelihood (model)
what output do I consider likely under a given hypothesis?
Task 2 define an assumption/belief over all hypothesis (model) what types of models do I think are more probable than others
Task 3 update my belief with new observations (data) formulate posterior (compute)

Task 1 define a likelihood (model)
what output do I consider likely under a given hypothesis?
Task 2 define an assumption/belief over all hypothesis (model) what types of models do I think are more probable than others
Task 3 update my belief with new observations (data) formulate posterior (compute)
Task 4 predict using my new belief (predict)

Task 1 define a likelihood (model)
what output do I consider likely under a given hypothesis?
Task 2 define an assumption/belief over all hypothesis (model) what types of models do I think are more probable than others
Task 3 update my belief with new observations (data)
formulate posterior (compute)
Task 4 predict using my new belief (predict) formulate predictive distribution

Linear Regression

$$
\begin{aligned}
& y=f(\mathbf{x}, \mathbf{w})+\epsilon=\mathbf{w}^{\mathrm{T}} \mathbf{x}+\epsilon \\
& \epsilon \sim \mathcal{N}\left(0, \beta^{-1} I\right)
\end{aligned}
$$

- We assume that we have been given data pairs $\left\{y_{i}, \mathbf{x}_{i}\right\}_{i=1}^{N}$ corrupted by addative noise
- We assume that the distribution of the noise follows a Gaussian

Explaining Away

Explaining Away

Explaining Away

$$
\tilde{y}=\mathbf{w}^{\mathrm{T}} x
$$

Likelihood

$$
y=\mathbf{w}^{\mathrm{T}} \mathbf{x}+\epsilon
$$

Likelihood

$$
\begin{aligned}
y & =\mathbf{w}^{\mathrm{T}} \mathbf{x}+\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & =\epsilon
\end{aligned}
$$

Likelihood

$$
\begin{aligned}
y & =\mathbf{w}^{\mathrm{T}} \mathbf{x}+\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & =\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & \sim \mathcal{N}\left(\epsilon \mid 0, \beta^{-1} I\right)=\left(\frac{\beta}{2 \pi}\right)^{\frac{1}{2}} e^{-\frac{1}{2}(\epsilon-0) \beta(\epsilon-0)}
\end{aligned}
$$

Likelihood

$$
\begin{aligned}
y & =\mathbf{w}^{\mathrm{T}} \mathbf{x}+\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & =\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & \sim \mathcal{N}\left(\epsilon \mid 0, \beta^{-1} I\right)=\left(\frac{\beta}{2 \pi}\right)^{\frac{1}{2}} e^{-\frac{1}{2}(\epsilon-0) \beta(\epsilon-0)} \\
\Rightarrow \mathcal{N}\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x} \mid 0, \beta^{-1} I\right) & =\left(\frac{\beta}{2 \pi}\right)^{\frac{1}{2}} e^{-\frac{1}{2}\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x}\right) \beta\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)}
\end{aligned}
$$

Likelihood

$$
\begin{aligned}
y & =\mathbf{w}^{\mathrm{T}} \mathbf{x}+\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & =\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & \sim \mathcal{N}\left(\epsilon \mid 0, \beta^{-1} I\right)=\left(\frac{\beta}{2 \pi}\right)^{\frac{1}{2}} e^{-\frac{1}{2}(\epsilon-0) \beta(\epsilon-0)} \\
\Rightarrow \mathcal{N}\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x} \mid 0, \beta^{-1} I\right) & =\left(\frac{\beta}{2 \pi}\right)^{\frac{1}{2}} e^{-\frac{1}{2}\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x}\right) \beta\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)} \\
\Rightarrow \mathcal{N}\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x} \mid 0, \beta^{-1} I\right) & =\mathcal{N}\left(y \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}, \beta^{-1} I\right)
\end{aligned}
$$

Likelihood

$$
\begin{aligned}
y & =\mathbf{w}^{\mathrm{T}} \mathbf{x}+\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & =\epsilon \\
y-\mathbf{w}^{\mathrm{T}} \mathbf{x} & \sim \mathcal{N}\left(\epsilon \mid 0, \beta^{-1} I\right)=\left(\frac{\beta}{2 \pi}\right)^{\frac{1}{2}} e^{-\frac{1}{2}(\epsilon-0) \beta(\epsilon-0)} \\
\Rightarrow \mathcal{N}\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x} \mid 0, \beta^{-1} I\right) & =\left(\frac{\beta}{2 \pi}\right)^{\frac{1}{2}} e^{-\frac{1}{2}\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x}\right) \beta\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)} \\
\Rightarrow \mathcal{N}\left(y-\mathbf{w}^{\mathrm{T}} \mathbf{x} \mid 0, \beta^{-1} I\right) & =\mathcal{N}\left(y \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}, \beta^{-1} I\right) \\
\Rightarrow p(y \mid \mathbf{w}, \mathbf{x}) & =\mathcal{N}\left(y \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}, \beta^{-1} I\right)
\end{aligned}
$$

Likelihood

- Likelihood

$$
p(y \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(y \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}, \beta^{-1}\right)
$$

- Independence

$$
p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}, \beta^{-1}\right)
$$

Assume each output to be independent given the input and the parameters

Linear Regression

- Likelihood is Gaussian in w

$$
p(y \mid \mathbf{w}, \mathbf{x})=\mathcal{N}\left(y \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}, \beta^{-1} I\right)
$$

Linear Regression

- Likelihood is Gaussian in w

$$
p(y \mid \mathbf{w}, \mathbf{x})=\mathcal{N}\left(y \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}, \beta^{-1} I\right)
$$

- Conjugate Prior

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{0}, \mathbf{S}_{0}\right)
$$

Linear Regression

- Likelihood is Gaussian in w

$$
p(y \mid \mathbf{w}, \mathbf{x})=\mathcal{N}\left(y \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}, \beta^{-1} I\right)
$$

- Conjugate Prior

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{0}, \mathbf{S}_{0}\right)
$$

- Posterior

$$
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}\right)
$$

Linear Regression

- Likelihood is Gaussian in w

$$
p(y \mid \mathbf{w}, \mathbf{x})=\mathcal{N}\left(y \mid \mathbf{w}^{\mathrm{T}} \mathbf{x}, \beta^{-1} I\right)
$$

- Conjugate Prior

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{0}, \mathbf{S}_{0}\right)
$$

- Posterior

$$
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}\right)
$$

- $\mathrm{m}_{N}, \mathbf{S}_{N}$ is the mean and the co-variance of the posterior after having seen N data-points

Posterior

- Posterior is Gaussian

$$
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}\right)
$$

Posterior

- Posterior is Gaussian

$$
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}\right)
$$

- Identification

$$
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\underbrace{\frac{p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{\int p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w}) \mathrm{d} \mathbf{w}}}_{p(\mathbf{y} \mid \mathbf{X})} \propto p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})
$$

Posterior

- Posterior is Gaussian

$$
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}\right)
$$

- Identification

$$
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\underbrace{\frac{p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{\int p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w}) \mathrm{d} \mathbf{w}}}_{p(\mathbf{y} \mid \mathbf{X})} \propto p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})
$$

- Posterior

$$
\begin{aligned}
\mathbf{m}_{N} & =\left(\mathbf{S}_{0}^{-1}+\beta \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\left(S_{0}^{-1} \mathbf{m}_{0}+\beta \mathbf{X}^{\mathrm{T}} \mathbf{y}\right) \\
\mathbf{S}_{N} & =\left(\mathbf{S}_{0}^{-1}+\beta \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Posterior

- Assumption Zero mean isotropic Gaussian

$$
p(\mathbf{w} \mid \alpha)=\mathcal{N}\left(\mathbf{w} \mid 0, \alpha^{-1} \mathbf{I}\right)
$$

Posterior

- Assumption Zero mean isotropic Gaussian

$$
p(\mathbf{w} \mid \alpha)=\mathcal{N}\left(\mathbf{w} \mid 0, \alpha^{-1} \mathbf{I}\right)
$$

- Posterior

$$
\begin{gathered}
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})=\mathcal{N}\left(\mathbf{w} \mid \beta\left(\alpha \mathbf{I}+\beta \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}\right. \\
\left.\left(\alpha \mathbf{I}+\beta \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\right)
\end{gathered}
$$

Linear Regression Example

- Model

$$
f(x, \mathbf{w})=w_{0}+w_{1} x
$$

Linear Regression Example

- Model

$$
f(x, \mathbf{w})=w_{0}+w_{1} x
$$

- Data

$$
\begin{aligned}
f(x, \mathbf{a}) & =a_{0}+a_{1} x, \quad\left\{a_{0}, a_{1}\right\}=\{-0.3,0.5\} \\
y & =f(x, \mathbf{a})+\epsilon, \epsilon \sim \mathcal{N}\left(0,0.2^{2}\right)
\end{aligned}
$$

Linear Regression Example

- Model

$$
f(x, \mathbf{w})=w_{0}+w_{1} x
$$

- Data

$$
\begin{aligned}
f(x, \mathbf{a}) & =a_{0}+a_{1} x, \quad\left\{a_{0}, a_{1}\right\}=\{-0.3,0.5\} \\
y & =f(x, \mathbf{a})+\epsilon, \epsilon \sim \mathcal{N}\left(0,0.2^{2}\right)
\end{aligned}
$$

- Prior

$$
p(\mathbf{w})=\mathcal{N}(\boldsymbol{w} \mid \mathbf{0}, 2.0 \cdot \mathbf{I})
$$

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Linear Regression Example

Data and Beliefs

Knowledge is Relative

Statistics or Machine Learning

"The difference between statistics and machine learning is that the former cares about parameters while the latter cares about prediction"

- Prof. Neil D. Lawrence

Prediction

$$
p\left(y_{*} \mid \mathbf{y}, \mathbf{x}_{*}, \mathbf{X}, \alpha, \beta\right)=\int p\left(y_{*} \mid \mathbf{x}_{*}, \mathbf{w}, \beta\right) p(\mathbf{w} \mid \mathbf{y}, \mathbf{X}, \alpha, \beta) \mathrm{d} \mathbf{w}
$$

- we do not really care about the value of \mathbf{w} we care about new prediction y_{*} at location \mathbf{x}_{*}
- look at the marginal distribution, i.e. when we average out the weight

Predictive Posterior

Linear Regression

- Linear function only in parameters

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+\sum_{j=1}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$

Non-Linear Basis Functions

Non-Linear Basis Functions

Non-Linear Basis Functions

Non-Linear Basis Functions

Summary

Summary

- That was a lot of philosphical nonsense to do something I did in school when I was 12

[^0]
Summary

- That was a lot of philosphical nonsense to do something I did in school when I was 12
- The important thing was not "least squares" but how we reasoned to get to the result

[^1]- That was a lot of philosphical nonsense to do something I did in school when I was 12
- The important thing was not "least squares" but how we reasoned to get to the result
- This reasoning will stay consistent through the course ${ }^{2}$

[^2]
Bernoulli Trial

Linear Regression

Gaussian Identities

$$
p\left(x_{1}, x_{2}\right) \quad p(x 1) \quad p\left(x 1 \mid x_{2}\right)
$$

eof

References

References

Chomsky, Noam A and Jerry A Fodor (1980). "The inductivist fallacy." In: Language and Learning: The Debate between Jean Piaget and Noam Chomsky.
固 Laplace, Pierre Simon (1814). A philosophical essay on probabilities.

Does this make sense?

Posterior Variance

$$
\mathbf{S}_{N}=\left(\mathbf{I} \alpha+\beta \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}
$$

Posterior Mean

$$
\mathbf{m}_{N}=\left(\frac{1}{\alpha} \mathbf{I}+\beta \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \beta \mathbf{X}^{\mathrm{T}} \mathbf{y}
$$

Posterior Variance

$$
\begin{aligned}
\mathbf{S}_{N} & =\left(\mathbf{I} \alpha+\beta \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{I} \alpha+\beta\left[\begin{array}{ll}
\sum_{i}^{N} 1 & \sum_{i} x_{i} \\
\sum_{i} x_{i} & \sum_{i} x_{i}^{2}
\end{array}\right]\right)^{-1}=\left[\begin{array}{cc}
\beta N+\alpha & \beta \sum_{i} x_{i} \\
\beta \sum_{i} x_{i} & \alpha+\beta \sum_{i} x_{i}^{2}
\end{array}\right]^{-1} \\
& =\frac{1}{(\beta N+\alpha)\left(\alpha+\beta \sum_{i} x_{i}^{2}\right)-\left(\beta \sum_{i} x_{i}\right)^{2}}\left[\begin{array}{cc}
\alpha+\beta \sum_{i} x_{i}^{2} & -\beta \sum_{i} x_{i} \\
-\beta \sum_{i} x_{i} & \beta N+\alpha
\end{array}\right]
\end{aligned}
$$

Posterior Variance

$$
\mathbf{S}_{N}=\frac{1}{(\beta N+\alpha)\left(\alpha+\beta \sum_{i} x_{i}^{2}\right)-\left(\beta \sum_{i} x_{i}\right)^{2}}\left[\begin{array}{cc}
\alpha+\beta \sum_{i} x_{i}^{2} & -\beta \sum_{i} x_{i} \\
-\beta \sum_{i} x_{i} & \beta N+\alpha
\end{array}\right]
$$

Posterior Variance

$$
\mathbf{S}_{N}=\frac{1}{(\beta N+\alpha)\left(\alpha+\beta \sum_{i} x_{i}^{2}\right)-\left(\beta \sum_{i} x_{i}\right)^{2}}\left[\begin{array}{cc}
\alpha+\beta \sum_{i} x_{i}^{2} & -\beta \sum_{i} x_{i} \\
-\beta \sum_{i} x_{i} & \beta N+\alpha
\end{array}\right]
$$

- Lets assume input is centered $\Rightarrow \sum_{i} x_{i}=0$

$$
\begin{aligned}
\mathbf{S}_{N} & =\frac{1}{(\beta N+\alpha)\left(\alpha+\beta \sum_{i} x_{i}^{2}\right)}\left[\begin{array}{cc}
\alpha+\beta \sum_{i} x_{i}^{2} & 0 \\
0 & \beta N+\alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{\beta N+\alpha} & 0 \\
0 & \frac{1}{\alpha+\beta \sum_{i} x_{i}^{2}}
\end{array}\right]
\end{aligned}
$$

Posterior Mean

$$
\begin{aligned}
\mathbf{m}_{N} & =\left(\alpha \mathbf{I}+\beta \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \beta \mathbf{X}^{\mathrm{T}} \mathbf{y} \\
& =\beta \mathbf{S}_{N}\left[\begin{array}{ccc}
1 & \ldots & 1 \\
x_{1} & \ldots & x_{N}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right] \\
& =\beta \mathbf{S}_{N}\left[\begin{array}{c}
\sum_{i} y_{i} \\
\sum_{i} y_{i} x_{i}
\end{array}\right]
\end{aligned}
$$

Posterior Mean

$$
\mathbf{m}_{N}=\beta \mathbf{S}_{N}\left[\begin{array}{c}
\sum_{i} y_{i} \\
\sum_{i} y_{i} x_{i}
\end{array}\right]
$$

- Lets assume input is centered $\Rightarrow \sum_{i} x_{i}=0$

$$
\begin{aligned}
\mathbf{m}_{N} & =\beta\left[\begin{array}{cc}
\frac{1}{\beta N+\alpha} & 0 \\
0 & \frac{1}{\alpha+\beta \sum_{i} x_{i}^{2}}
\end{array}\right]\left[\begin{array}{c}
\sum_{i} y_{i} \\
\sum_{i} y_{i} x_{i}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\beta \sum_{i} y_{i}}{\beta N+\alpha} \\
\frac{\beta \sum_{i} y_{i} x_{i}}{\alpha+\beta \sum_{i} x_{i}^{2}}
\end{array}\right]
\end{aligned}
$$

Posterior Mean Slope

$$
\begin{aligned}
\tilde{w}_{0} & =\frac{\beta \sum_{i} y_{i}}{\beta N+\alpha} \\
p\left(w_{0}\right) & =\mathcal{N}\left(w_{0} \mid 0, \frac{1}{\alpha}\right) \\
p(\epsilon) & =\mathcal{N}\left(\epsilon \mid 0, \frac{1}{\beta}\right)
\end{aligned}
$$

Which Parametrisation

- Should I use a line, polynomial, quadratic basis function?
- How many basis functions should I use?
- Likelihood won't help me
- How do we proceed?

Regression Models

Linear Linear Model

$$
p\left(y_{i} \mid x_{i}, \mathbf{w}\right)=\mathcal{N}\left(w_{0}+w_{1} \cdot x_{i}, \beta^{-1}\right)
$$

Basis function

$$
p\left(y_{i} \mid x_{i}, \mathbf{w}\right)=\mathcal{N}\left(\sum_{i=1}^{6} w_{i} \phi\left(x_{i}\right), \beta^{-1}\right)
$$

Model 1

Model 2

Evidence

Model Selection ${ }^{3}$

Occams Razor

Definition (Occams Razor)
"All things being equal, the simplest solution tends to be the best one"

- William of Ockham

What is Simple? ${ }^{4}$

[^3]
Model Selection ${ }^{3}$

[^0]: ${ }^{2}$ we really hope so :-)

[^1]: ${ }^{2}$ we really hope so :-)

[^2]: ${ }^{2}$ we really hope so :-)

[^3]: 4https://www.imdb.com/title/tt8132700/

