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Today

• Why understanding our ignorance is not just desirable but necessary for
learning

• Why knowledge is subjective or relative

• Re-cap of linear regression
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Inductive Reasoning

Inductive Reasoning
"In inductive inference, we go from the specific to the general. We make many
observations, discern a pattern, make a generalization, and infer an explanation
or a theory"

– Wassertheil-Smoller
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Inductive Reasoning II

Inductive Reasoning
Unlike deductive arguments, inductive reasoning allows for the possibility that the
conclusion is false, even if all of the premises are true.
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The Scientific Principle

Hypothesis

Experiment

Evidence

Data + Model
Compute︷︸︸︷→ Prediction
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"The Machine Learning Principle"1

"There is a notion of success . . . which I think is novel in the history
of science. It interprets success as approximating unanalyzed data."

– Prof. Noam Chomsky

1Chomsky et al., 1980
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Learning Theory

• H space of Hypothesis

• A learning algorithm

• S = {(x1, y1), . . . , (xN , yN )}
• S ∼ P (X × Y)

• ℓ(AH(S), x, y) loss function
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Statistical Learning

e(S,A,H) = EP ({X ,Y}) [ℓ(AH(S), x, y)]
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Statistical Learning

e(S,A,H) = EP ({X ,Y}) [ℓ(AH(S), x, y)]

=

∫
ℓ(AH(S), x, y)p(x, y)dxdy
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Statistical Learning

True Risk︷ ︸︸ ︷
e(S,A,H) = EP ({X ,Y}) [ℓ(AH(S), x, y)]

=

∫
ℓ(AH(S), x, y)p(x, y)dxdy

≈ 1

M

M∑
n=1

ℓ(AH(S), xn, yn)︸ ︷︷ ︸
Empirical Risk
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No Free Lunch

We can come up with a combination of {S,A,H} that are equvivalent under
the empirical risk that makes true risk take an arbitary value
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Assumptions: Algorithms

Statistical Learning

AH(S)
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Assumptions: Biased Sample

Statistical Learning

AH(S)
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Assumptions: Hypothesis space

Statistical Learning

AH(S)

19



The Scientific Principle

Hypothesis

Experiment

Evidence

Data + Model
Compute︷︸︸︷→ Prediction
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Example
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Example
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Example
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Example
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Example
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Data and Beliefs
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Example
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Encoding Beliefs
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Manipulation of Beliefs

Sum Rule

p(y) =


∑

∀θ∈Θ p(y, θ)

∫
p(y, θ)dθ

Product Rule
p(y, θ) = p(y | θ)p(θ)
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Bayes’ "Rule"

p(y, θ) = p(y|θ)p(θ)
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p(y, θ) = p(θ|y)p(y)

p(θ|y)p(y) = p(y|θ)p(θ)
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Semantics

p(θ | y) = p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

Likelihood How much evidence is there in the data for a specific hypothesis

Prior What are my beliefs about different hypothesis

Posterior What is my updated belief after having seen data

Evidence What is my belief about the data
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Marginalisation

p(D) =

∫
p(D | θ)p(θ)dθ
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Marginalisation

p(D) =

∫
p(D | θ) p(θ)dθ︸ ︷︷ ︸

dt(θ)
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Marginalisation
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Marginalisation
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Marginalisation

30



Laplace, 1814

"One sees, from this Essay, that the theory of probabilities is basically just
common sense reduced to calculus; it makes one appreciate with exactness that
which accurate minds feel with a sort of instinct, often without being able to
account for it."

– Simon Laplace
31



Parametrising our Ignorance

Data Today

Model Today and Thursday

Computation Week 4

32



Linear Regression



Linear Regression

• Linear function in both parameters and data

y(x,w) = w0 + w1x1 + . . . wDxD = wTx+ w0 = {D = 1}w0 + w1 · x
33



Linear Regression

• Linear function only in parameters

y(x,w) = w0 +
M−1∑
j=1

wjϕj(x) = wTϕ(x)
34



Linear Regression

y(x,w) = wTx =

[
w0

w1

]T [
1

x

]

• Given observations of data pairs D = {yi,xi}Ni=1 can we infer what w
should be

35



Linear Regression

Task 1 define a likelihood (model)

what output do I consider likely under a given hypothesis?

Task 2 define an assumption/belief over all hypothesis (model)

what types of models do I think are more probable than others

Task 3 update my belief with new observations (data)

formulate posterior (compute)

Task 4 predict using my new belief (predict)

formulate predictive distribution
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Linear Regression

y = f(x,w) + ϵ = wTx+ ϵ

ϵ ∼ N (0, β−1I)

• We assume that we have been given data pairs {yi,xi}Ni=1 corrupted by
addative noise

• We assume that the distribution of the noise follows a Gaussian
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Explaining Away

y = wTx+ ϵ
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Explaining Away

y − ϵ = wTx
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Explaining Away

ỹ = wTx

40



Likelihood

y = wTx+ ϵ
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Likelihood

y = wTx+ ϵ

y −wTx = ϵ
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Likelihood

y = wTx+ ϵ

y −wTx = ϵ

y −wTx ∼ N (ϵ|0, β−1I) =

(
β

2π

) 1
2

e−
1
2
(ϵ−0)β(ϵ−0)
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Likelihood

y = wTx+ ϵ

y −wTx = ϵ

y −wTx ∼ N (ϵ|0, β−1I) =

(
β

2π

) 1
2

e−
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2
(ϵ−0)β(ϵ−0)
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(
β
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) 1
2

e−
1
2
(y−wTx)β(y−wTx)

⇒ N (y −wTx|0, β−1I) = N (y|wTx, β−1I)

⇒ p(y|w,x) = N (y|wTx, β−1I)
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Likelihood

• Likelihood
p(y|x,w, β) = N

(
y|wTx, β−1

)
• Independence

p(y|X,w, β) =
N∏

n=1

N
(
yn|wTxn, β

−1
)

Assume each output to be independent given the input and the parameters
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Linear Regression

• Likelihood is Gaussian in w

p(y|w,x) = N (y|wTx, β−1I)

• Conjugate Prior
p(w) = N (w|m0,S0)

• Posterior
p(w|y,X) = N (w|mN ,SN )

• mN ,SN is the mean and the co-variance of the posterior after having seen
N data-points
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Posterior

• Posterior is Gaussian

p(w|y,X) = N (w|mN ,SN )

• Identification

p(w|y,X) =
p(y|X,w)p(w)∫
p(y|X,w)p(w)dw︸ ︷︷ ︸

p(y|X)

∝ p(y|X,w)p(w)

• Posterior

mN =
(
S−1
0 + βXTX

)−1 (
S−1
0 m0 + βXTy

)
SN =

(
S−1
0 + βXTX

)−1
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Posterior

• Assumption Zero mean isotropic Gaussian

p(w|α) = N (w|0, α−1I)

• Posterior

p(w|y,X) = N (w|β
(
αI+ βXTX

)−1
XTy,(

αI+ βXTX
)−1

)
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Linear Regression Example

• Model
f(x,w) = w0 + w1x

• Data
f(x, a) = a0 + a1x, {a0, a1} = {−0.3, 0.5}

y = f(x, a) + ϵ, ϵ ∼ N (0, 0.22)

• Prior
p(w) = N (w|0, 2.0 · I)
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Linear Regression Example
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Data and Beliefs
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Knowledge is Relative
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Statistics or Machine Learning

"The difference between statistics and machine learning is that the former
cares about parameters while the latter cares about prediction"
– Prof. Neil D. Lawrence
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Prediction

p(y∗|y,x∗,X, α, β) =

∫
p(y∗|x∗,w, β)p(w|y,X, α, β)dw

• we do not really care about the value of w we care about new prediction y∗
at location x∗

• look at the marginal distribution, i.e. when we average out the weight
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Predictive Posterior

65



Predictive Posterior
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Predictive Posterior
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Predictive Posterior
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Predictive Posterior
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Predictive Posterior
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Predictive Posterior
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Predictive Posterior
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Predictive Posterior
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Predictive Posterior
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Linear Regression

• Linear function only in parameters

y(x,w) = w0 +
M−1∑
j=1

wjϕj(x) = wTϕ(x)
75



Non-Linear Basis Functions
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Non-Linear Basis Functions
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Non-Linear Basis Functions
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Non-Linear Basis Functions
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Non-Linear Basis Functions
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Summary



Summary

• That was a lot of philosphical nonsense to do something I did in school when
I was 12

• The important thing was not "least squares" but how we reasoned to get to
the result

• This reasoning will stay consistent through the course2

2we really hope so :-)
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Bernoulli Trial
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Bernoulli Trial
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Bernoulli Trial
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Bernoulli Trial
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Bernoulli Trial
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Bernoulli Trial
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Bernoulli Trial
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Bernoulli Trial
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Bernoulli Trial
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Linear Regression
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Gaussian Identities

p(x1, x2) p(x1) p(x1 | x2)

98



eof
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Does this make sense?

Posterior Variance
SN =

(
Iα + βXTX

)−1

Posterior Mean

mN =

(
1

α
I+ βXTX

)−1

βXTy



Posterior Variance

SN =
(
Iα + βXTX

)−1

=

(
Iα + β

[ ∑N
i 1

∑
i xi∑

i xi
∑

i x
2
i

])−1

=

[
βN + α β

∑
i xi

β
∑

i xi α + β
∑

i x
2
i

]−1

=
1

(βN + α)(α + β
∑

i x
2
i )− (β

∑
i xi)
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[
α + β

∑
i x
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i −β

∑
i xi

−β
∑

i xi βN + α
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Posterior Variance
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∑
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∑
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Posterior Variance
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Posterior Mean

mN =
(
αI+ βXTX

)−1
βXTy

= βSN

[
1 . . . 1

x1 . . . xN

] y1
...
yN


= βSN

[ ∑
i yi∑

i yixi

]



Posterior Mean

mN = βSN

[ ∑
i yi∑

i yixi

]

• Lets assume input is centered ⇒
∑

i xi = 0

mN = β

[
1

βN+α 0

0 1
α+β

∑
i x

2
i

][ ∑
i yi∑

i yixi

]

=

[
β
∑

i yi
βN+α

β
∑

i yixi

α+β
∑

i x
2
i

]



Posterior Mean Slope

w̃0 =
β
∑

i yi
βN + α

p(w0) = N (w0|0,
1

α
)

p(ϵ) = N (ϵ|0, 1
β
)



Which Parametrisation

• Should I use a line, polynomial, quadratic basis function?

• How many basis functions should I use?

• Likelihood won’t help me

• How do we proceed?



Regression Models

Linear Linear Model

p(yi|xi,w) = N (w0 + w1 · xi, β−1)

Basis function

p(yi|xi,w) = N (
6∑

i=1

wiϕ(xi), β
−1)



Model 1



Model 2



Evidence

p(Y) =

∫
p(Y|W)p(W)dW



Model Selection3

3David MacKay PhD Thesis

http://www.inference.org.uk/mackay/PhD.html


Occams Razor



Occams Razor

Definition (Occams Razor)
"All things being equal, the simplest solution tends to be the best one"

– William of Ockham



What is Simple?4

4https://www.imdb.com/title/tt8132700/

https://www.imdb.com/title/tt8132700/


Model Selection3

3David MacKay PhD Thesis

http://www.inference.org.uk/mackay/PhD.html

	Linear Regression
	Summary
	References
	References
	Appendix

