Machine Learning and the Physical World
Lecture 1: Introduction

Carl Henrik Ek - che29@cam.ac.uk

5th of October, 2023
http://carlhenrik.com

Titus-Bode "Law"

Beobachtungen dee zu Palerma \boldsymbol{D}_{1} f Jan. isor von Prot. Piazzi neu entieckion Geftipns.

1801	bonnenZeit	$\left\{\begin{array}{c} \text { Gerad } \\ \text { Aufitig in } \\ \text { Zeit } \end{array}\right.$	$\begin{gathered} \text { GeradeAuE } \\ \text { ftoigung } \\ \text { in Gradeq } \end{gathered}$	Nórdi.	fcho Länge	Breite	$\begin{gathered} \hline \text { It der Sonine } \\ +20 \\ \text { Ahorration } \\ \hline \end{gathered}$	Logar. d. Diffans © 0
Jan.								
	84317							7
	8834 : 53.3	3 26 38.4 !	513936,0	$15443 i, 6$	$\left\lvert\, \begin{array}{lllll}1 & 23 & 19 & 48 \\ 1 & 3 & 56 & 5\end{array}\right.$	3 58 2 98	$\begin{array}{llll}9 & 11 & \\ 9 & 13 & 3\end{array}$	24
	830.42	$3{ }^{3} 26123 \cdot 15$	513547,	$15475 \% 6$	1231415,5	25355,6	9144	6418
	8615	3 25 32, I:	$\begin{array}{llll}51 & 23 & 1,5\end{array}$	161032,0	$1 \begin{array}{llll}1 & 23 & 7 & 59.1\end{array}$	2290 ,	92010	
	827	$\begin{array}{lll}3 & 25 & 29.73\end{array}$	512726.					
	75426,2	32530.30	5122	162249.5	1231027,6	21659,7	9231213	90
	$7503^{1,7}$	3. 25	5122	1627 5.7	$12312 \quad 1,2$	21256,7	92414	9,9928809
	35			164013.0				
	$\begin{array}{lllll}75 & 12 & 12\end{array}$	3:25	512845,0					
	$l_{7} 31285$	3 2668.815	$51132 \begin{array}{lll}51 & 31\end{array}$	16.49 16, 1	$1 \begin{array}{llll}1 & 23 & 25 & 59,2\end{array}$, 53 38,	9.2919	\%
	${ }_{7}^{7} 24.27$	3 36634,27	[1 31834,1	1658 35,9	$1 \begin{array}{llll}1 & 23 & 34 & 21,3\end{array}$	1,46 6,0	101204	
	720 21,7	32649,42 5	5142 21 ,	17.318.	$\begin{array}{llll}1 & 23 & 39 & 1,8\end{array}$	142281	102 IV	86
	716435	$\begin{array}{lll}3 & 27 & 6, y 0\end{array}$	51 4643.5	17885	1234415.7 ,	13852,1	$10 \cdot 322$	348
	${ }^{6} 58$ 51,3!	328 54, 53.	$\begin{array}{lllll}52 & 13 & 38.3\end{array}$	1732541	1241515,	1216	10826	5062
	65152,9	132948,14	$\begin{array}{llll}52 & 27 & 2,7 \\ -2 & 7\end{array}$	$17+3.11,0$	12430900	11416,0	10 10 2746	9,9936332
	64825.4	$33017,25$	$\begin{array}{llll}52 & 34 & 18,8\end{array}$	$17+821.5$	$\begin{array}{lllll}1 & 24 & 38 & 7.3\end{array}$	1054.6	10 II 2828.	9, 9937007
Febr.	64459.9	3 30 47. $2:$	5241 48, 0	175336.3		7309	10122989	9, 9937703
	64135.8	$3 \mathrm{3I} 19,06$	5249 45*9.	17.5857 .5	11 24 54 1 25	41.5	10132949	9.9938423
	$5 \% 6313155$	3332,70	531540,5	$1815 \quad 1,0$	1-25 22.43 ,	5423.9	10163145,	9, 9940751
	62139,2	33458.	5344	3123.2	125532			
	61158	3376.	516	4758,8	1262630	36	223513.45	

Cerces Data Publication

A NEW PLANET.

An important circumftance in Aftronomy has juft occurred, no lefs than the Difovery of another new Planet!!! This celefial phenomenor movesbetween the orbits of Mars and Jupiter, and is an intermediatel lavet between theme It was difeovered by M. Pinzzi, an Italian Aftronomer, on the att of Janary, 1801. He concealed the difcovery, to preferve all the honour and obfervations to himfelf, till after fix weeks clofe watching, he fell ill. It will ngt be in a fitu sion, with regard to the Sub, to be obferved again, till a month or two hence. It is but a fmall Planet, ranking only as a star of the eighth magnitude, adi therefore not vilible to the naked eye. Its motion is nearly parallel to the ecliptic, at prefent about $4^{\frac{8}{2}}{ }^{\circ}$ to the north of it, and nearly entering the fign 1eo. The diftance from the Sun is about $2 \frac{3}{3}$ times that of the earth, and the periodical time nearly four years and two months.-Other particulars thall be given in our next.

Kepler's 3 Laws of Planetary Motion

The orbits are ellipses

Equal areas in equal time

LVII. Ueiver den Hewen Haupplatheten. 647
hier in der Nathe der Quadratur der Eipfinfs der Son-nep-Lange geringer ift, alo in gndern Lagen. Dr.
Gauffs glanbt daher, dafs of nichit undfeulich wife, Gaulfs glant daher, dafs ef nicht undenlich wiare,
wenn man die Fehler der Sonnentafely aus fehr ge-
nauenr Beobachtungen für diele Zôiten beftimmote, tund die Ötter der Sonne hiernach verbelferte. Diele vier. tsni Eiemente find nun folgende :

 $\begin{array}{lll}\text { Exconntricitit } & 0,082507 \\ \text { Epo }\end{array}$ Epoohe 180031 Doce $77^{\circ \prime} 36^{\prime} 34^{\circ}$

Ans diefen Elemeriten bat Dr ter der Cores Ferdiutanded in valuf: folgend Die Zeit ift mittlere für Mitternacht in Palerve

ska				$\left\|\begin{array}{l} \text { Logatith: } \\ \text { Lognter } \\ \text { won der } \end{array}\right\|$	
Nov. 25 Dec.	5 52016	925	0,42181 0,40940	0, 40468	- 6459
\cdots	5.247	10 1200	0. 39643	0.40479	20, 685
13	$5: 2551$	10 3770	-0.38296	0, 40488	10, 7290
	52727	$1{ }^{11} 40$	0. 36902	0. 40499	
25	52853	i1 320	0, 35468	0.40512	10
31	6 -	12 I	. 34		

Sollte man den Ort des Planeten nach diefen Ele menten genauer, oder auf eive lingere Zeit berechnen wollen: fo fetzen wir zu diefem Behufe noch folgende Formeln hierher:

An Over-determined System

An Over-determined System

- An over-determined system means that we have more data than we need to determine our parameters.

An Over-determined System

- An over-determined system means that we have more data than we need to determine our parameters.
- The problem arises because the model is a simplification of the world and the data is therefore inconsistent with our model.

Laplace Demon Laplace, 1814

We ought then to regard the present state of the universe as the effect of its anterior state and as the cause of the one which is to follow. Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective situation of the beings who compose it-an intelligence sufficiently vast to submit these data to analysis-it would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atom; for it, nothing would be uncertain and the future, as the past, would be present to its eyes.

Does God Play Dice? ${ }^{1}$

This led to the idea of scientific determinism, which seems first to have been publicly expressed by the French scientist, Laplace.

- Stephen Hawkins

[^0]All these efforts in the search for truth tend to lead [the human mind] back continually to the vast intelligence which we have just mentioned, but from which it will always remain infinitely removed.

- Pierre Simon Laplace, A Philosophical Essay on Probabilities Laplace, 1814
"The curve described by a simple molecule of air or vapor is regulated in a manner just as certain as the planetary orbits; the only difference between them is that which comes from our ignorance. Probability is relative, in part to this ignorance, in part to our knowledge. We know that of three or greater number of events a single one ought to occur; but nothing induces us to believe that one of them will occur rather than the others. In this state of indecision it is impossible for us to announce their occurrence with certainty. It is, however, probable that one of these events, chosen at will, will not occur because we see several cases equally possible which exclude its occurrence, while only a single one favors it."

An Over-determined Sysatem

- Over determined system

$$
y_{i}=\left[w_{1}, w_{2}\right]\left[\begin{array}{c}
x_{i} \\
1
\end{array}\right]
$$

An Over-determined Sysatem

- Over determined system

$$
y_{i}=\left[w_{1}, w_{2}\right]\left[\begin{array}{c}
x_{i} \\
1
\end{array}\right]
$$

- Parametrisation of ignorance

$$
y_{i}=[a, b]\left[\begin{array}{c}
x_{i} \\
1
\end{array}\right]+\epsilon_{i}
$$

The Gaussian Distribution

$$
\begin{aligned}
y_{i} & =[a, b]\left[\begin{array}{c}
x_{i} \\
1
\end{array}\right]+\epsilon_{i} \\
\epsilon_{i} & \sim \mathcal{N}(0, \cdot)
\end{aligned}
$$

Decomposition

An Under-determined System

Under-determined System

- Under determined system

$$
y_{i}=\left[w_{1}, w_{2}\right]\left[\begin{array}{c}
x_{i} \\
1
\end{array}\right]
$$

Under-determined System

- Under determined system

$$
y_{i}=\left[w_{1}, w_{2}\right]\left[\begin{array}{c}
x_{i} \\
1
\end{array}\right]
$$

- Parametrisation of ignorance

$$
\begin{aligned}
y_{i} & =\left[w_{1}, w_{2}\right]\left[\begin{array}{c}
x_{i} \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] } & \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})
\end{aligned}
$$

Einstein

Machine Learning in the Physical World

Machine Learning and the Physical World

Machine Learning

None

Aim of the course

Machine Learning

We ought then to regard the present state of the universe as the effect of its anterior state and as the cause of the one which is to follow. Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective situation of the beings who compose it-an intelligence sufficiently vast to submit these data to analysis-it would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atom; for it, nothing would be uncertain and the future, as the past, would be present to its eyes.

$$
\text { Data }+ \text { Model } \overbrace{\rightarrow}^{\text {Compute }} \text { Prediction }
$$

What is this course not

- Not about models

What is this course not

- Not about models
- Not about inference

What is this course not

- Not about models
- Not about inference
- Not about specific problems

Week 1 Introduction (che29)
Week 1 Quantification of Beliefs (che29)
Week 2 Gaussian Processes (che29)

Week 2 Simulation (ndl21)
Week 3 Cancelled (TBC)
Week 3 Emulation (ndl21)

[^1]
Course website

https://mlatcl.github.io/mlphysical/

Guest Lectures

Week 6 Electrical Engines: Monumo - Markus Kaiser, Nicola Durrande

Week 6 Electrical Engines: Monumo - Markus Kaiser, Nicola Durrande Week 7 Climate Models and Neural Processes: Prof. Rich Turner Engineering

Week 6 Electrical Engines: Monumo - Markus Kaiser, Nicola Durrande Week 7 Climate Models and Neural Processes : Prof. Rich Turner Engineering
 Week 7 Fluid Dynamics - Wittle Lab TBC

[^2]- Indivudual Assessment (2 10\%)

Gaussian Processes deadline 20/10
Sequential Decision Making deadline 3/11

- Indivudual Assessment (2 10\%)

Gaussian Processes deadline 20/10
Sequential Decision Making deadline 3/11

- Group Assessment (80\%)
- pick your own simulation environment
- deadline $18 / 1$

Summary

Summary

- The history of making a problem well posed by mixing data and knowledge goes far back
- The history of making a problem well posed by mixing data and knowledge goes far back
- In order to reduce our ignorance and learn we need to parametrise it
- The history of making a problem well posed by mixing data and knowledge goes far back
- In order to reduce our ignorance and learn we need to parametrise it
- The notion of probabilities allows us parametrise our ignorance
- The history of making a problem well posed by mixing data and knowledge goes far back
- In order to reduce our ignorance and learn we need to parametrise it
- The notion of probabilities allows us parametrise our ignorance
- Our ignorance comes from many sources
- The history of making a problem well posed by mixing data and knowledge goes far back
- In order to reduce our ignorance and learn we need to parametrise it
- The notion of probabilities allows us parametrise our ignorance
- Our ignorance comes from many sources
- model
- The history of making a problem well posed by mixing data and knowledge goes far back
- In order to reduce our ignorance and learn we need to parametrise it
- The notion of probabilities allows us parametrise our ignorance
- Our ignorance comes from many sources
- model
- data
- The history of making a problem well posed by mixing data and knowledge goes far back
- In order to reduce our ignorance and learn we need to parametrise it
- The notion of probabilities allows us parametrise our ignorance
- Our ignorance comes from many sources
- model
- data
- compute

```
eof
```


[^0]: ${ }^{1}$ Does God Play Dice? - Stephen Hawkins

[^1]: Week 4 Sequential Decision Making Under Uncertainty (che29)
 Week 4 Probabilistic Numeric (che29)
 Week 5 Experimental Design (ndl21)

 Week 5 Multifidelity Modelling
 (ndl21)
 Week 6 Project Introduction (che29)

[^2]: Week 6 Electrical Engines: Monumo - Markus Kaiser, Nicola Durrande Week 7 Climate Models and Neural Processes : Prof. Rich Turner Engineering
 Week 7 Fluid Dynamics - Wittle Lab TBC
 Week 8 TBA

