

Active learning in the real world

Machine learning for electric motor calibration

Henry Moss

henry.moss@secondmind.ai

Helping engineers design better cars faster

• Tech startup

Helping engineers design better cars faster

- Tech startup
- 50 people

Helping engineers design better cars faster

- Tech startup
- 50 people
- Maintain open-source toolboxes (Gpflow, Trieste)

Helping engineers design better cars faster

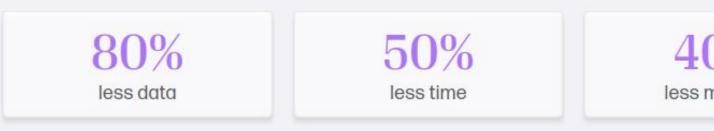
- Tech startup
- 50 people
- Maintain open-source toolboxes (Gpflow, Trieste)
- Develop active learning and Bayesian optimisation software products

Helping engineers design better cars faster

- Tech startup
- 50 people
- Maintain open-source toolboxes (Gpflow, Trieste)
- Develop active learning and Bayesian optimisation software products

How we help

Secondmind Active Learning helps optimize powertrain design and development processes more efficiently and in less time than current techniques, with up to...



Secondmind

40% less material

Everything you wanted to know about Electric Motors

What year was the first all-electric car?

1881 - First all-electric car

1971 - First lunar car



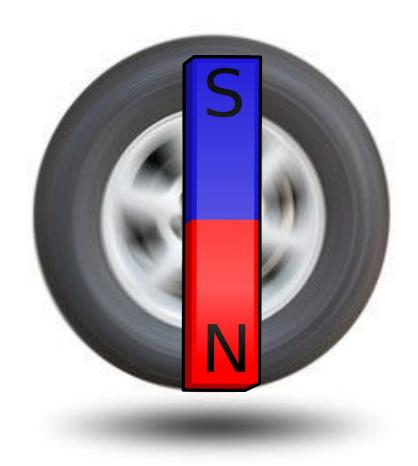
1985 - The C5

2010 - First electric hatchback

Electric motors

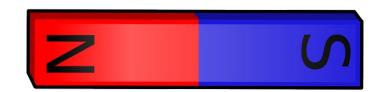
Secondmind

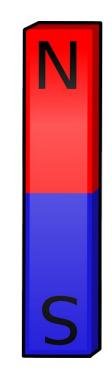
Electric motors



Secondmind

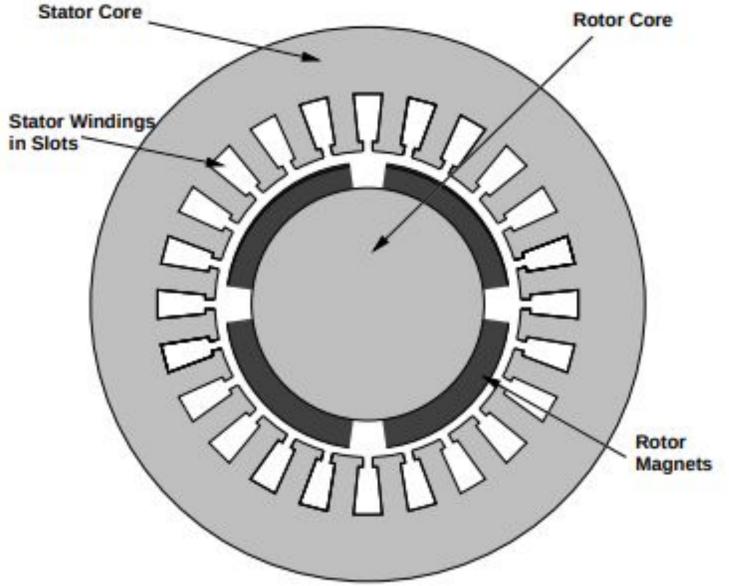
Electric motors





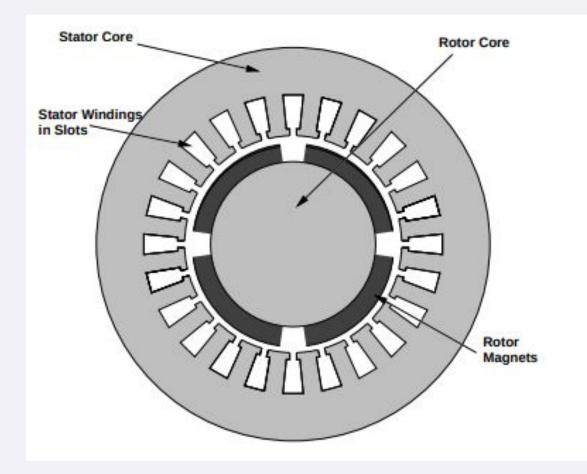
Secondmind

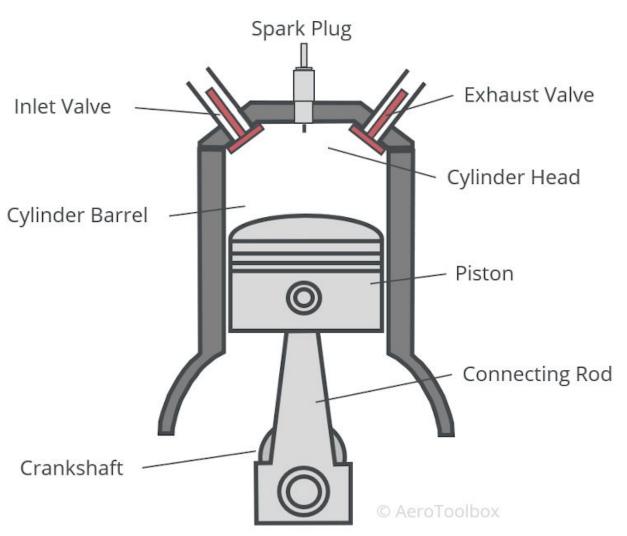
Background: Cross Section view of an EV Motor



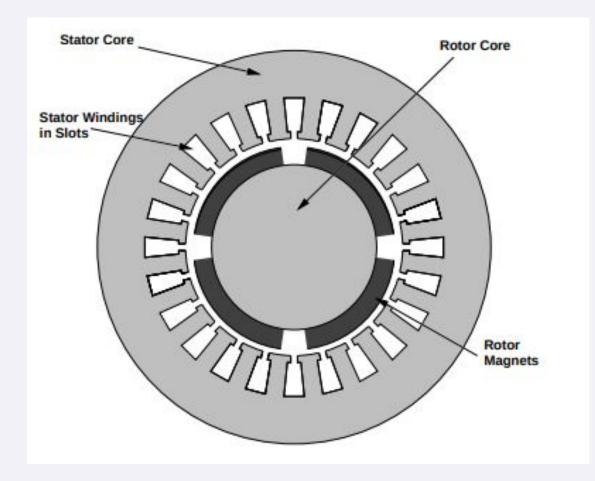
Secondmind

Comparison vs ICE





Comparison vs ICE



Electric Motors

Torque depends on:

The strength of the magnet: Ia - Current

The *location* of the magnet: β - Phase angle of the current

Secondmind

Electric Motors

Torque also depends on:

The rotation speed of the motor

Voltage supplied by the battery

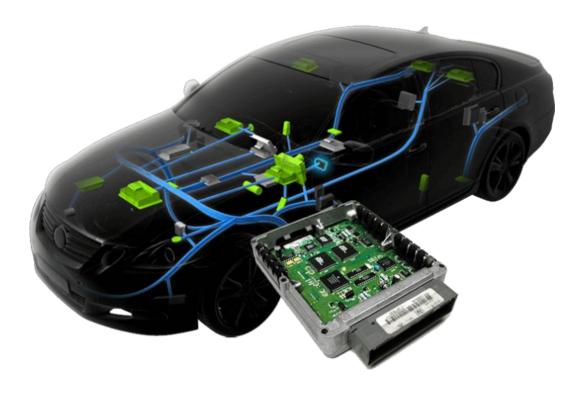
Temperature

Secondmind

Electric Motor Calibration

Engine control unit calibration

Goal: come up with a look-up table, a set of optimal engine configurations, given environmental conditions

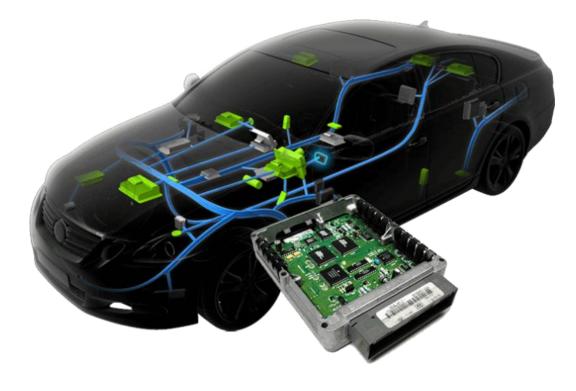


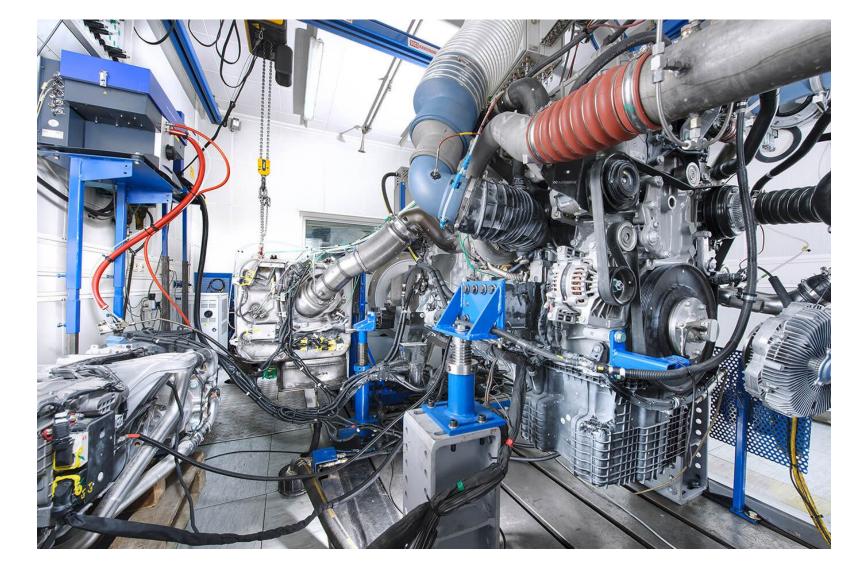
ECU

Electric Motor Calibration

Engine control unit calibration

Goal: come up with a look-up table, a set of optimal engine configurations, given environmental conditions





ECU

Secondmind

Test bench

How can we use existing BO stuff and what new innovations do we need?

- 6-10 inputs
- 2 objectives
- 1-3 constraints
- Need to find a look-up table = "profile optimum"
- Noise is heteroscedastic and overall budget = millions of observations

How can we use existing BO stuff and what new innovations do we need?

- 6-10 inputs 🔣
- 2 objectives 🗸
- 1-3 constraints 📿
- Need to find a look-up table = "profile optimum"
- Noise is heteroscedastic and overall budget = millions of observations (2)

How can we use existing BO stuff and what new innovations do we need?

- 6-10 inputs 🗸
- 2 objectives
- 1-3 constraints
- Need to find a look-up table = "profile optimum"
- Noise is heteroscedastic and overall budget = millions of observations

- 1 experiment takes < 1 minute
- 1 experiment delivers 100-1000 observations at a time
- Risk adversity
- Large/variable cost of preparing the motor for an experiment

How can we use existing BO stuff and what new innovations do we need?

- 6-10 inputs 🗸
- 2 objectives
- 1-3 constraints 📿
- Need to find a look-up table = "profile optimum"
- Noise is heteroscedastic and overall budget = millions of observations

- 1 experiment takes < 1 minute </p>
- 1 experiment delivers 100-1000 observations at a time
- Risk adversity 😢
- Large/variable cost of preparing the motor for an experiment

How can we use existing BO stuff and what new innovations do we need?

- 6-10 inputs 🗸
- 2 objectives 🗸
- 1-3 constraints 📿
- Need to find a look-up table = "profile optimum"
- Noise is heteroscedastic and overall budget = millions of observations
- 1 experiment takes < 1 minute 😣
- 1 experiment delivers 100-1000 observations at a time 😣
- Risk adversity
- Large/variable cost of preparing the motor for an experiment

We need methods that

- scale really well with data,
- are quick,
- are robust (i.e. work all the time, not just **once** for our paper)

How can we use existing BO stuff and what new innovations do we need?

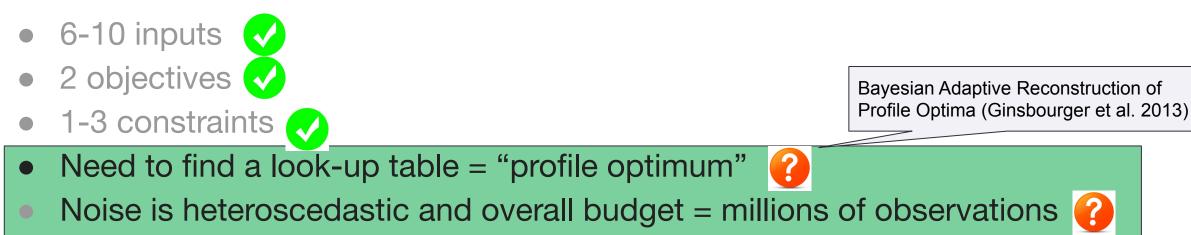
- 6-10 inputs 🗸
- 2 objectives
- 1-3 constraints
- Need to find a look-up table = "profile optimum"
- Noise is heteroscedastic and overall budget = millions of observations

- 1 experiment takes < 1 minute 😣
- 1 experiment delivers 100-1000 observations at a time 😣
- Risk adversity
- Large/variable cost of preparing the motor for an experiment 😥

We need methods that

- scale really well with data,
- are quick,
- are robust (i.e. work all the time, not just **once** for our paper)

How can we use existing BO stuff and what new innovations do we need?

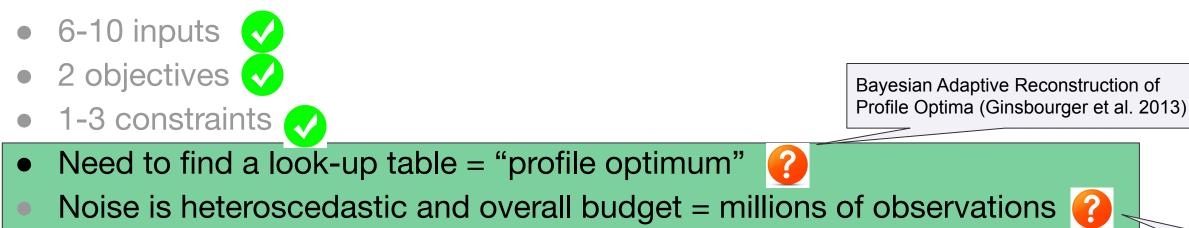


- 1 experiment takes < 1 minute 🔀
- 1 experiment delivers 100-1000 observations at a time
- Risk adversity
- Large/variable cost of preparing the motor for an experiment

We need methods that

- scale really well with data,
- are quick,
- are robust (i.e. work all the time, not just **once** for our paper)

How can we use existing BO stuff and what new innovations do we need?

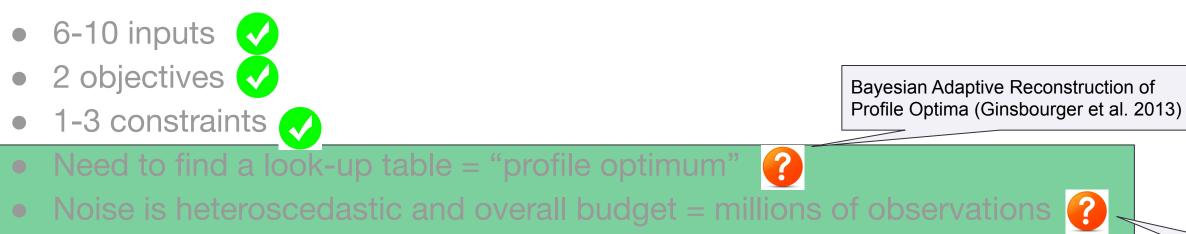


- 1 experiment takes < 1 minute 🔀
- experiment delivers 100-1000 observations at a time
- Risk adversity
- Large/variable cost of preparing the motor for an experiment 😰

We need methods that

- scale really well with data,
- are quick,
- are robust (i.e. work all the time, not just **once** for our paper)

How can we use existing BO stuff and what new innovations do we need?



- experiment takes < 1 minute 1
- experiment delivers 100-1000 observations at a time •
- Risk adversity
- Large/variable cost of preparing the motor for an experiment

We need methods that

- scale really well with data,
- are quick,
- are robust (i.e. work all the time, not just **once** for our paper)

Secondmind

Chained Gaussian Processes (Saul, Hensman, Vehtari, Lawrence et al 2016.)

???

A story of ML development in industry

A story of ML development in industry

1. BO recap

A story of ML development in industry

- 1. BO recap
- 2. First steps: Motor calibration Proof Of Concept (POC)
 - a. Profile optimisation
 - b. Scalable heteroscedastic Gaussian processes

A story of ML development in industry

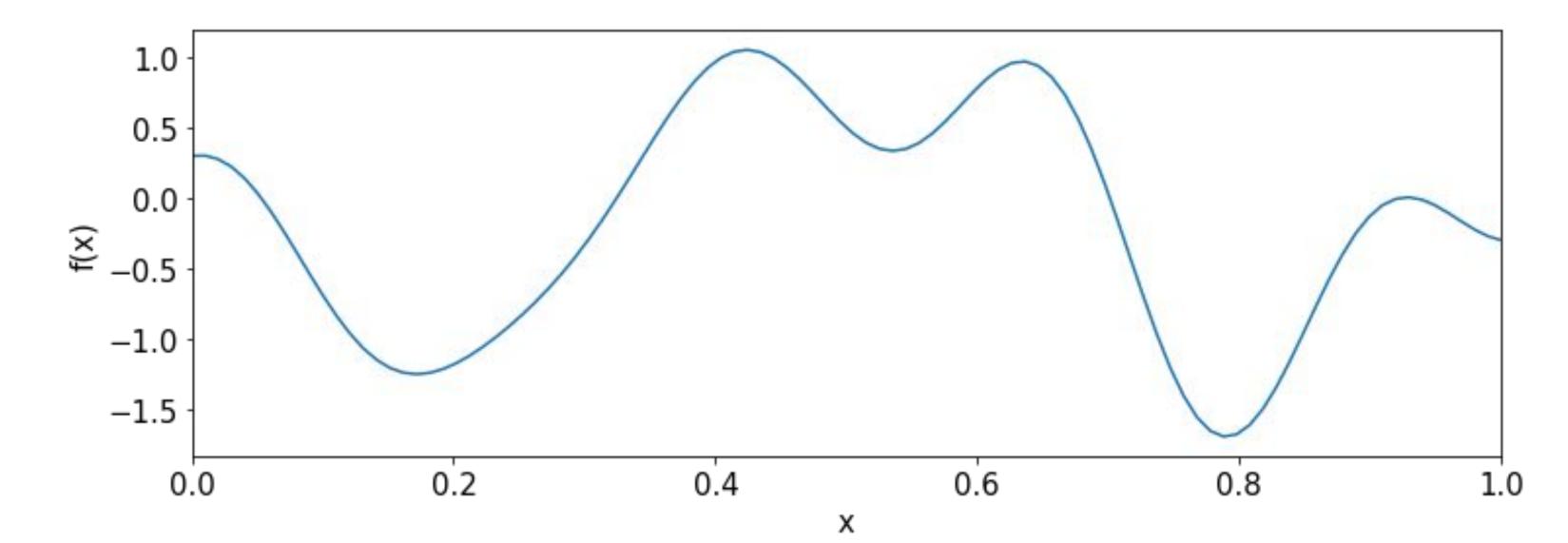
- 1. BO recap
- 2. First steps: Motor calibration Proof Of Concept (POC)
 - a. Profile optimisation
 - b. Scalable heteroscedastic Gaussian processes
- 3. Next steps: Research fun
 - i. Smooth BO
 - ii. Custom sparse models for BO
 - iii. Risk averse BO

Bayesian Optimization Recap

Model-based global optimization

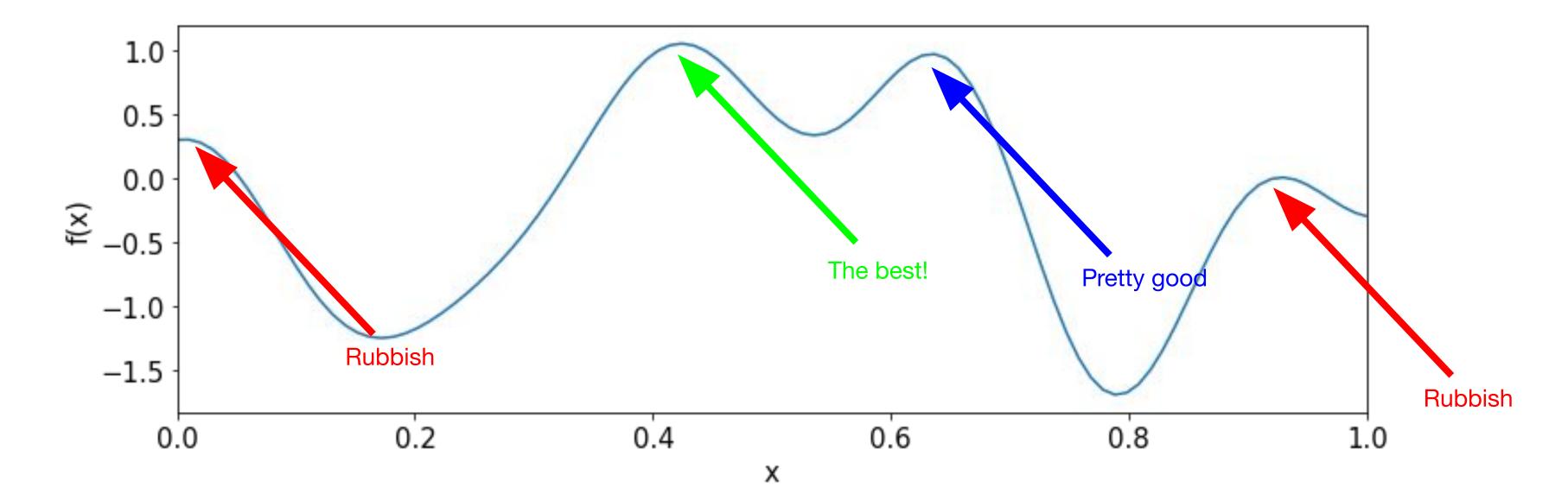
Let's find the maximum of a 1D function:

Using as **few** function evaluations as possible!

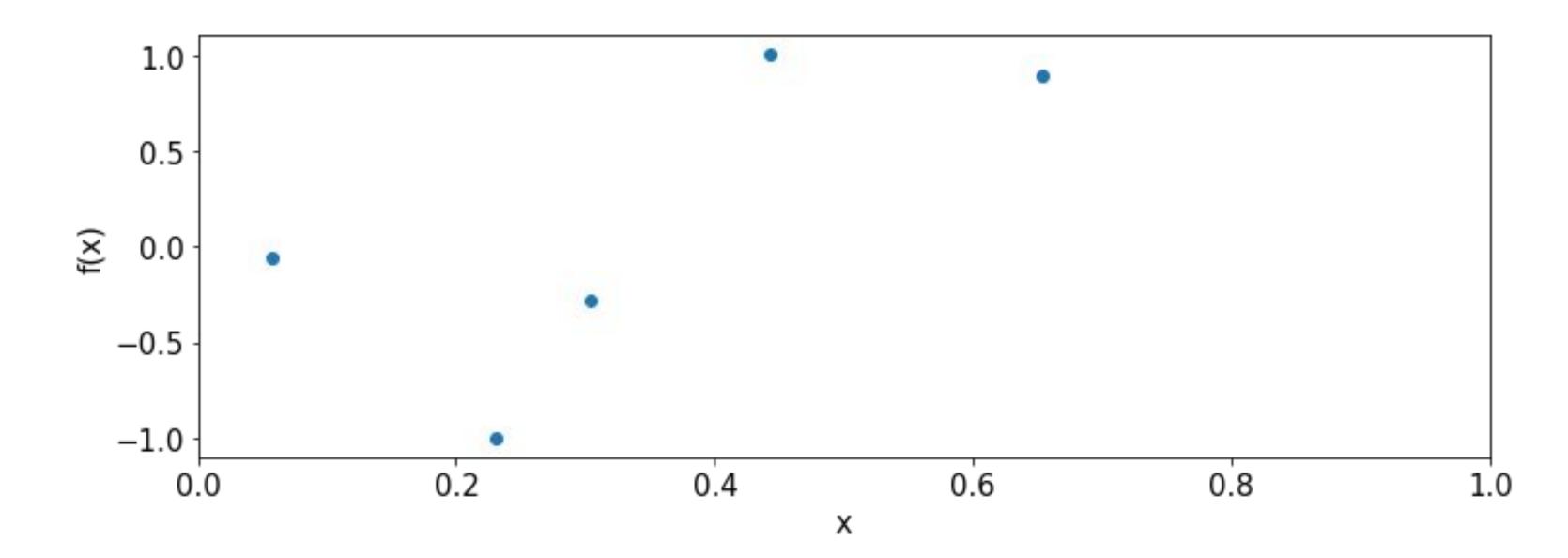


Let's find the maximum of a 1D function:

Using as **few** function evaluations as possible!

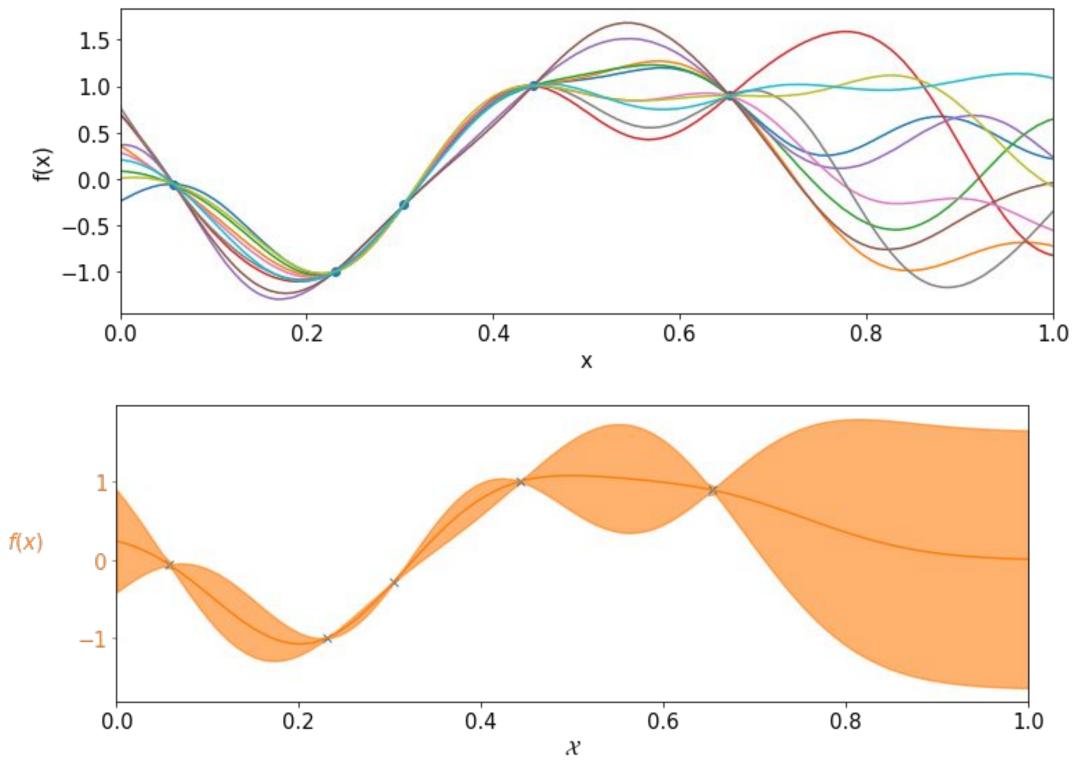


Suppose we make 5 evaluations

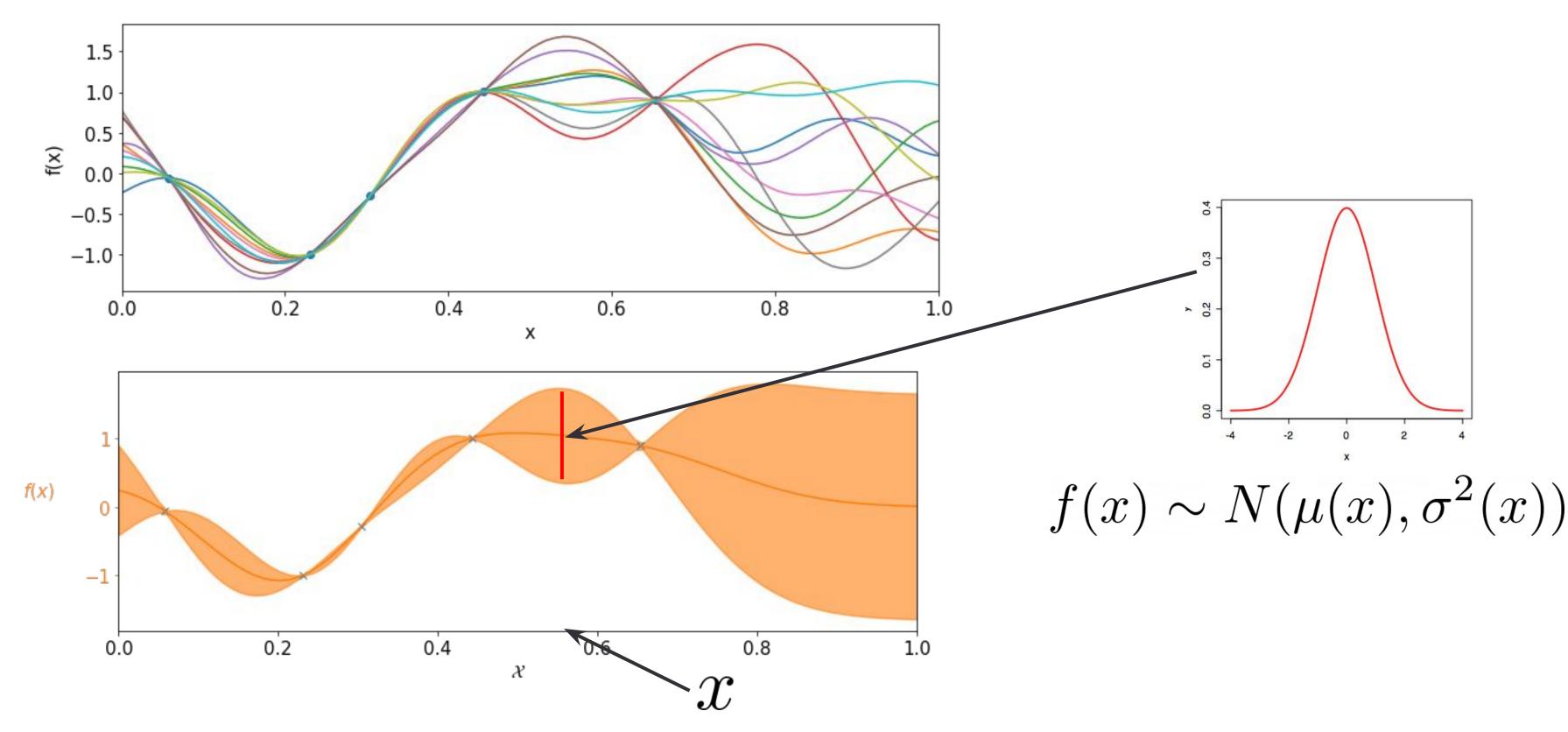


Where should we next evaluate? Explore/Exploit?

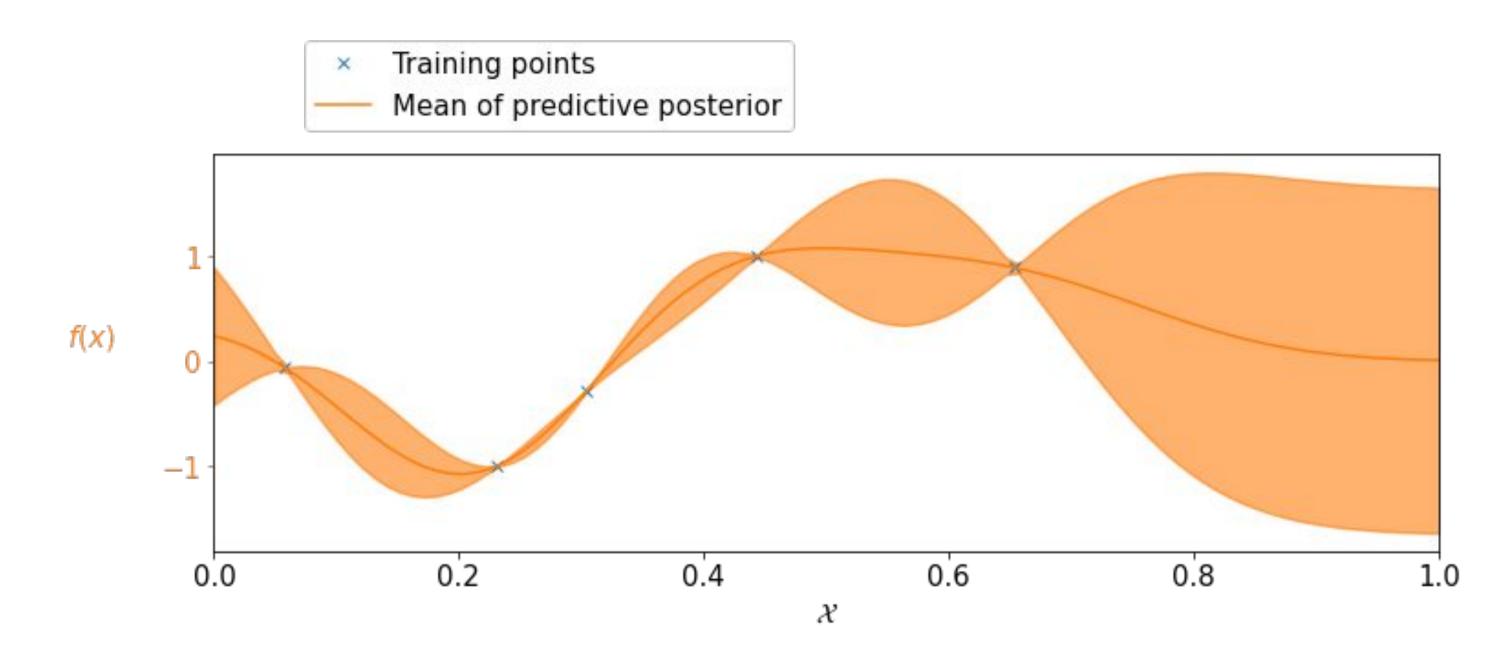
Use a statistical model like a Gaussian process



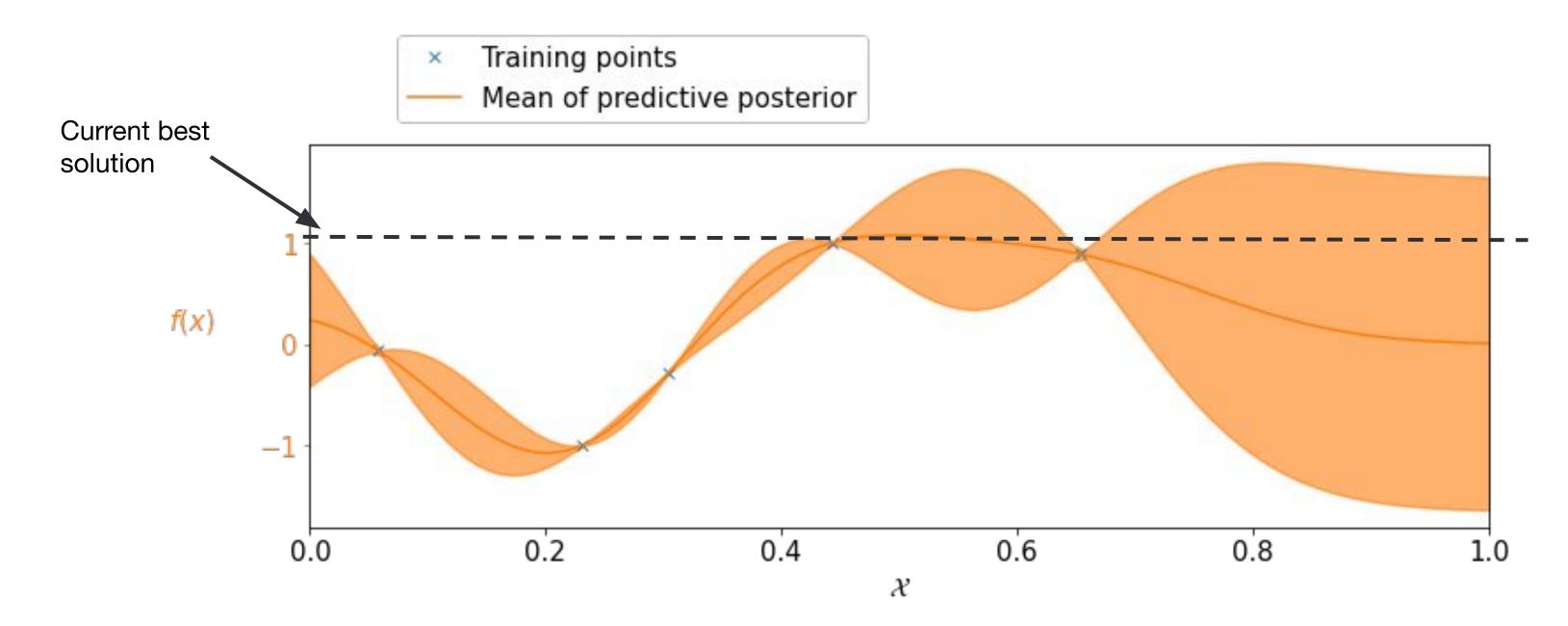
Use a statistical model like a Gaussian process



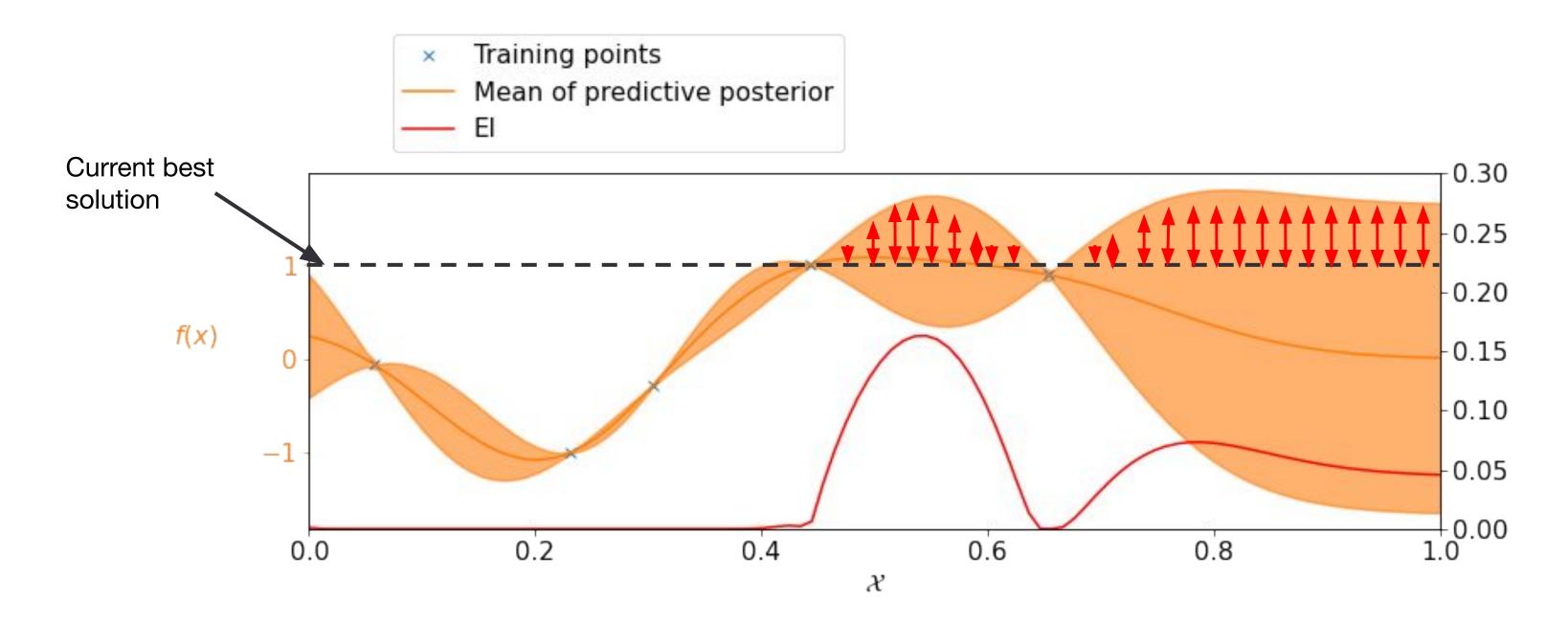
Automated decision making via an acquisition function like expected improvement



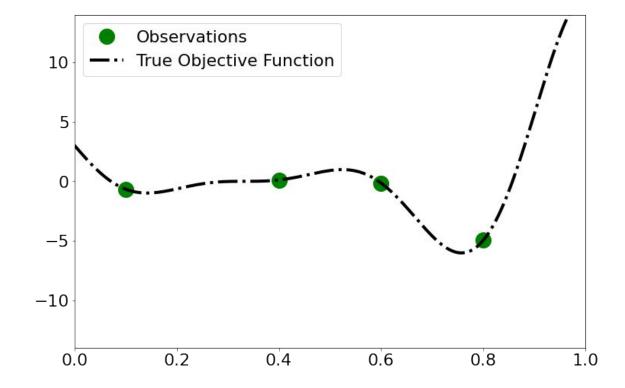
Automated decision making via an acquisition function like expected improvement



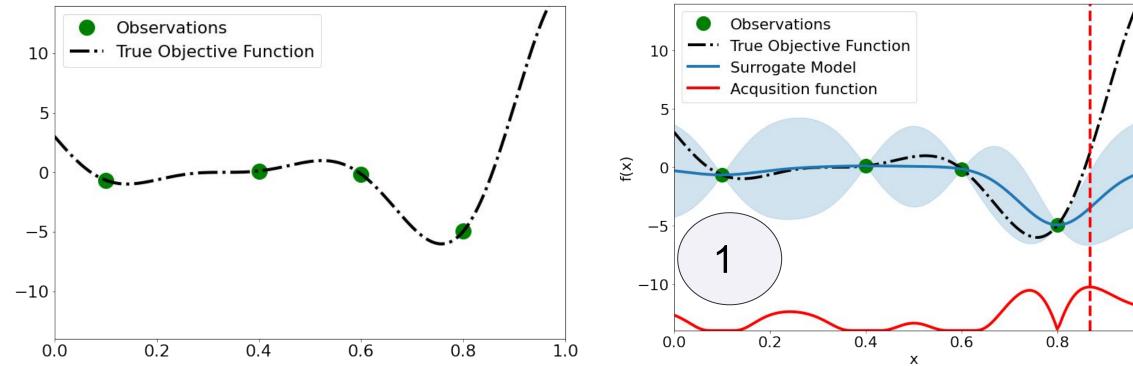
Automated decision making via an acquisition function like expected improvement



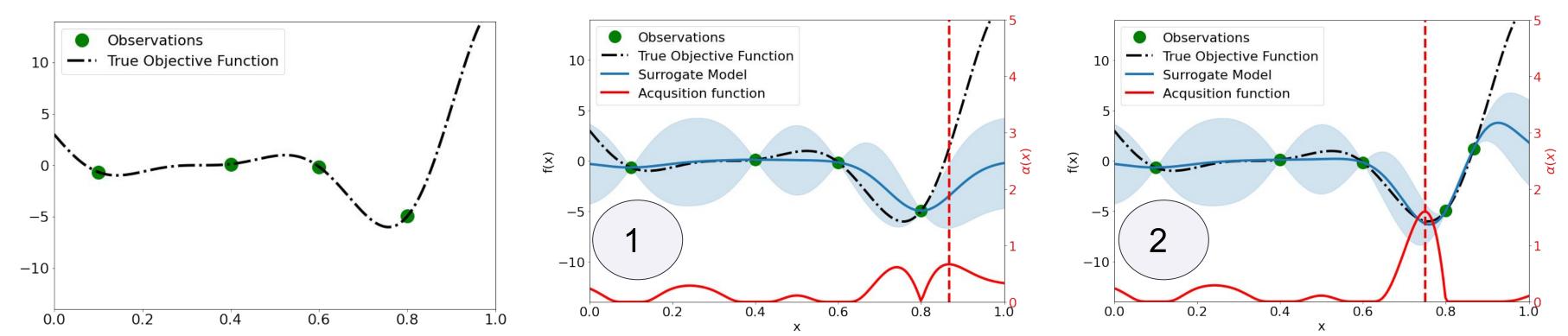
Demo BO loop



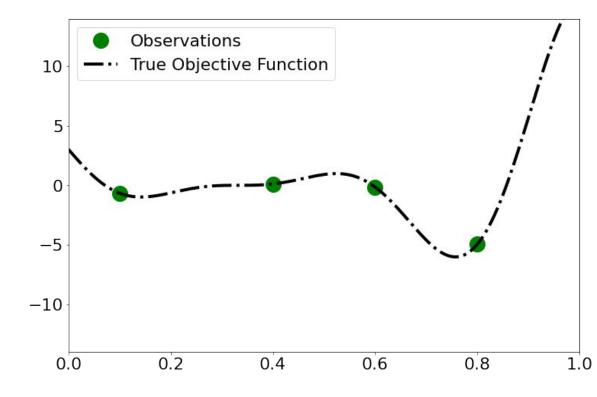
Demo BO loop

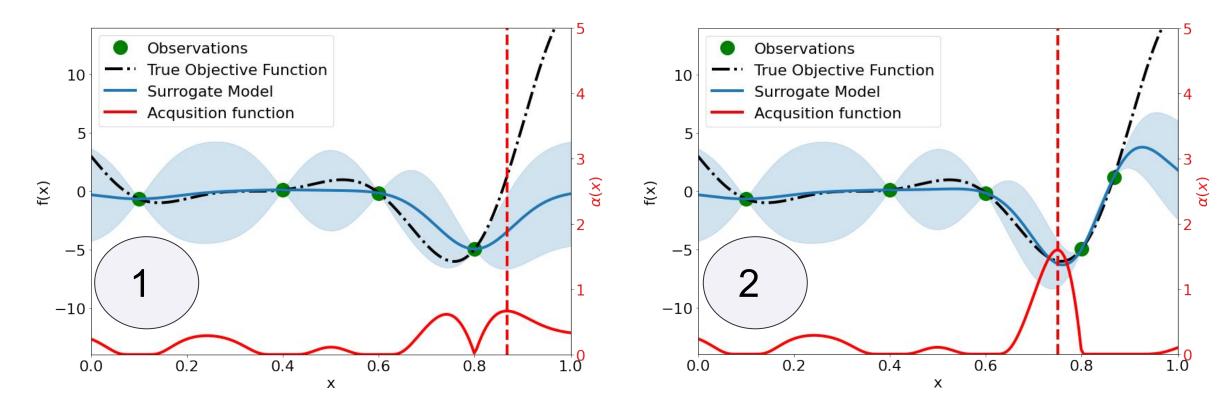


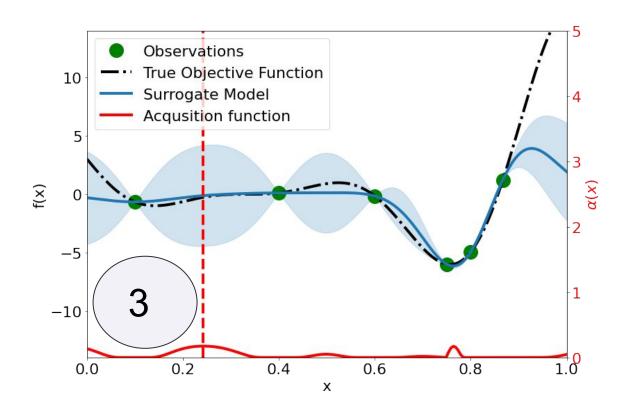
Demo BO loop



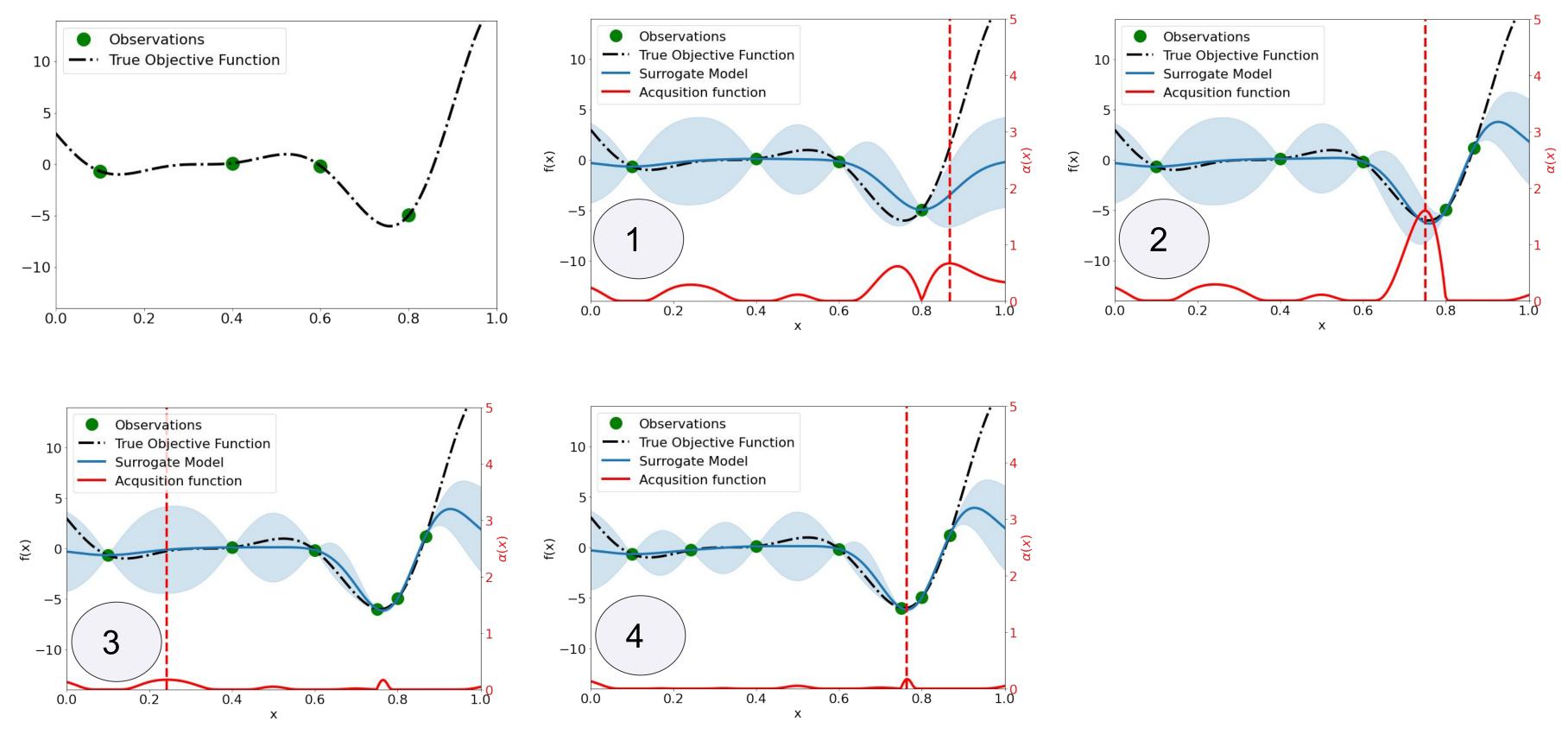
Demo BO loop



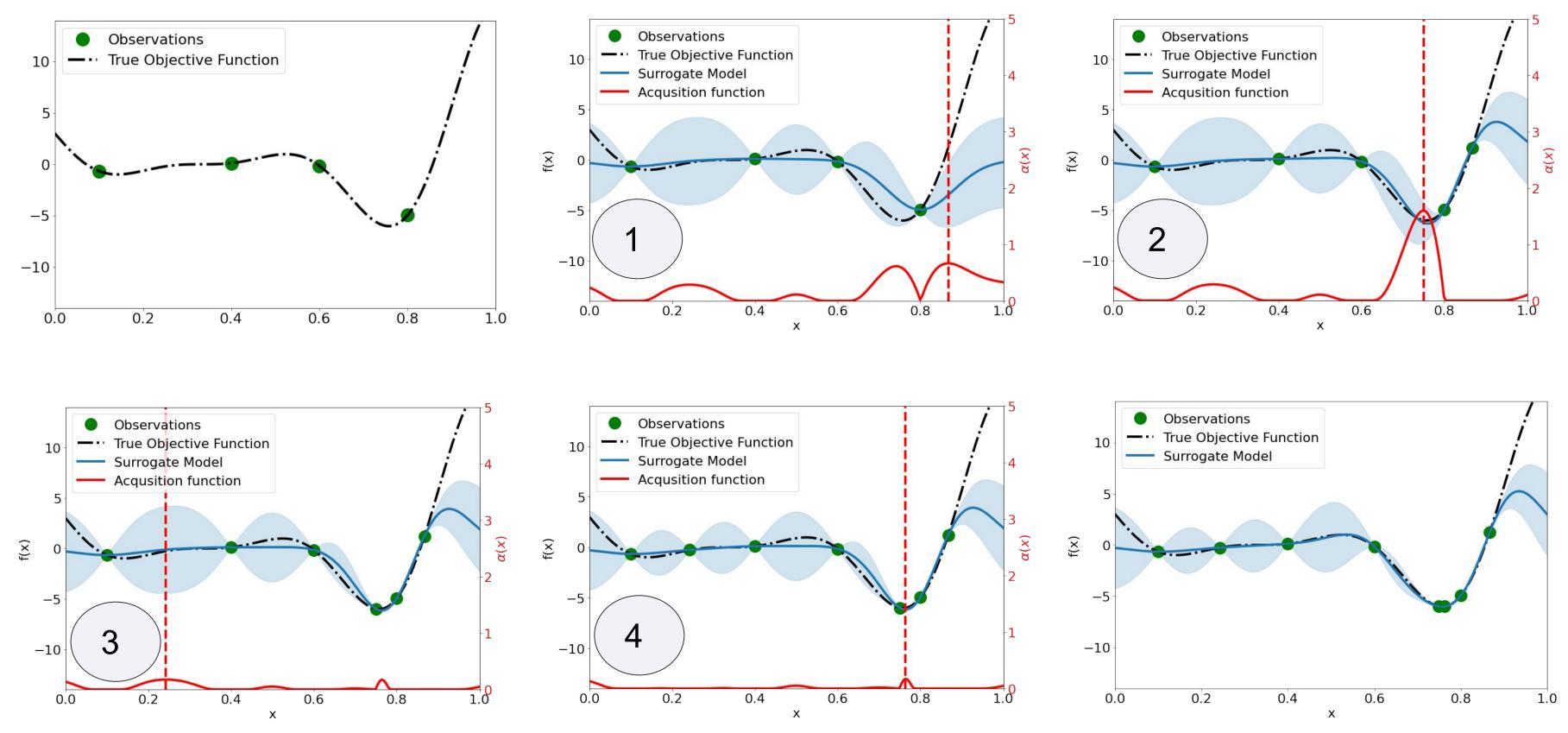




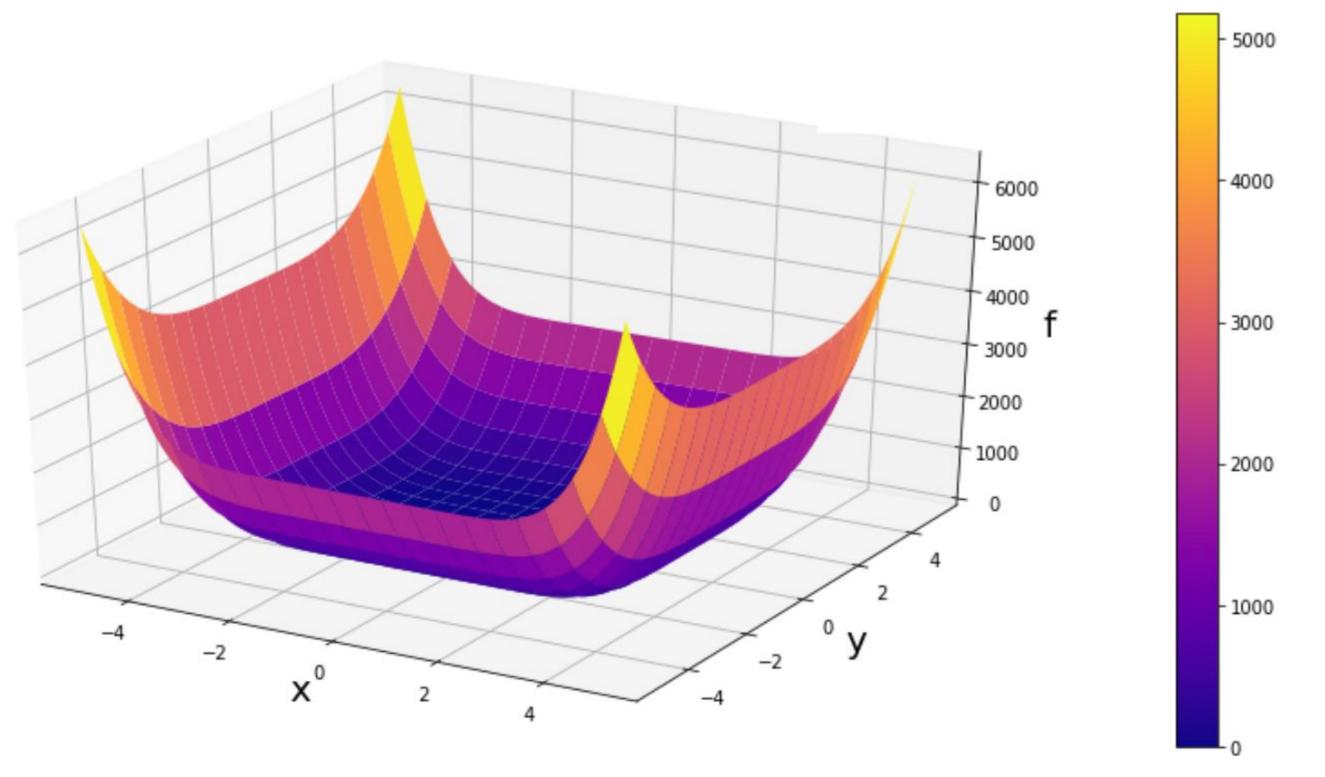
Demo BO loop



Demo BO loop



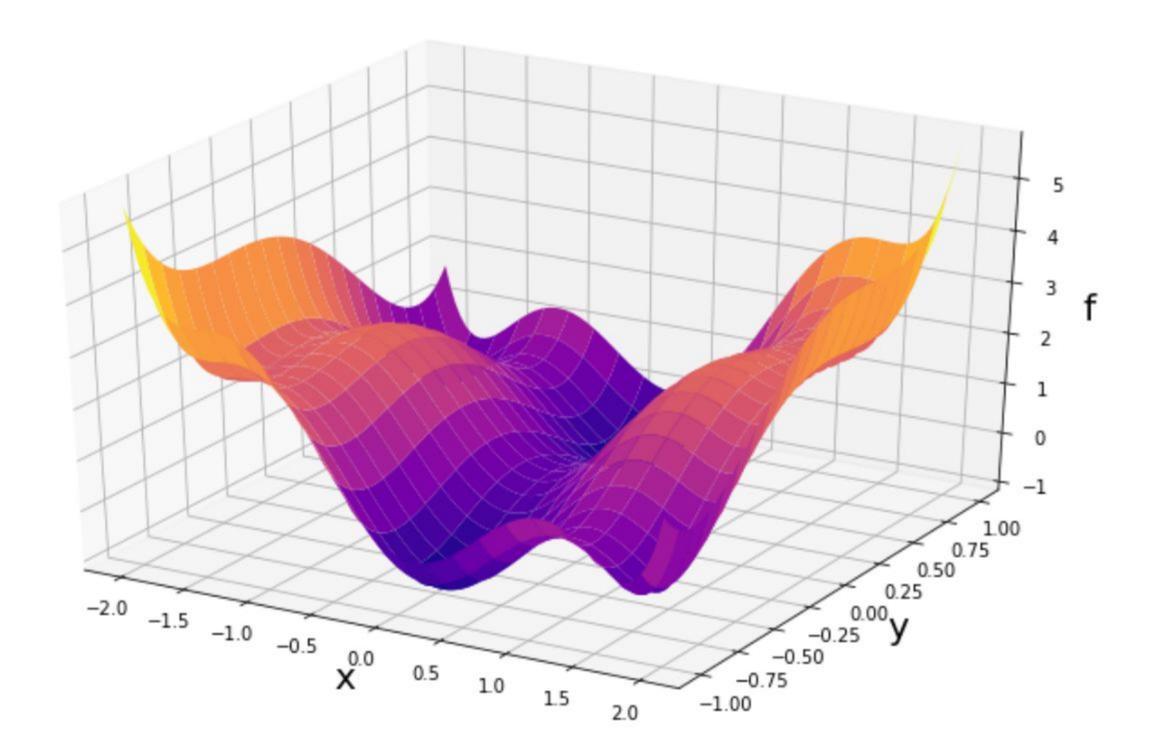
Let minimize the 6 Hump Camel function



Secondmind

Looks like we **can** use a local optimizer!

Zoom in: Perhaps not quite as easy?

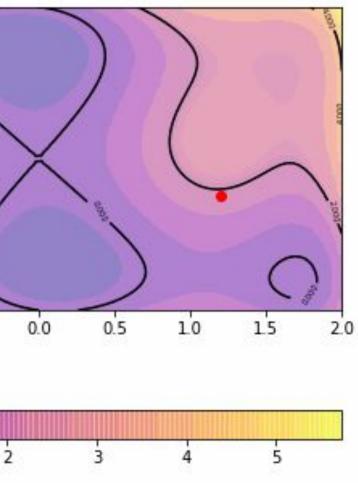


Secondmind

Looks like we **cannot** use a local optimizer!

Bayesian optimization is a global optimizer

Bayesian optimization (global) Gradient descent (local) 1.00 1.00 0.75 0.75 0.50 0.50 0.25 0.25 0.00 0.00 -0.25 -0.25 -0.50 -0.50 -0.75 -0.75 -1.00 + -2.0 -1.00-1.5 0.5 -1.0 -0.5 -2.0 -1.5 -1.0 -0.5 0.0 1.0 15 2.0 -1 2 3 5 -10 1 0



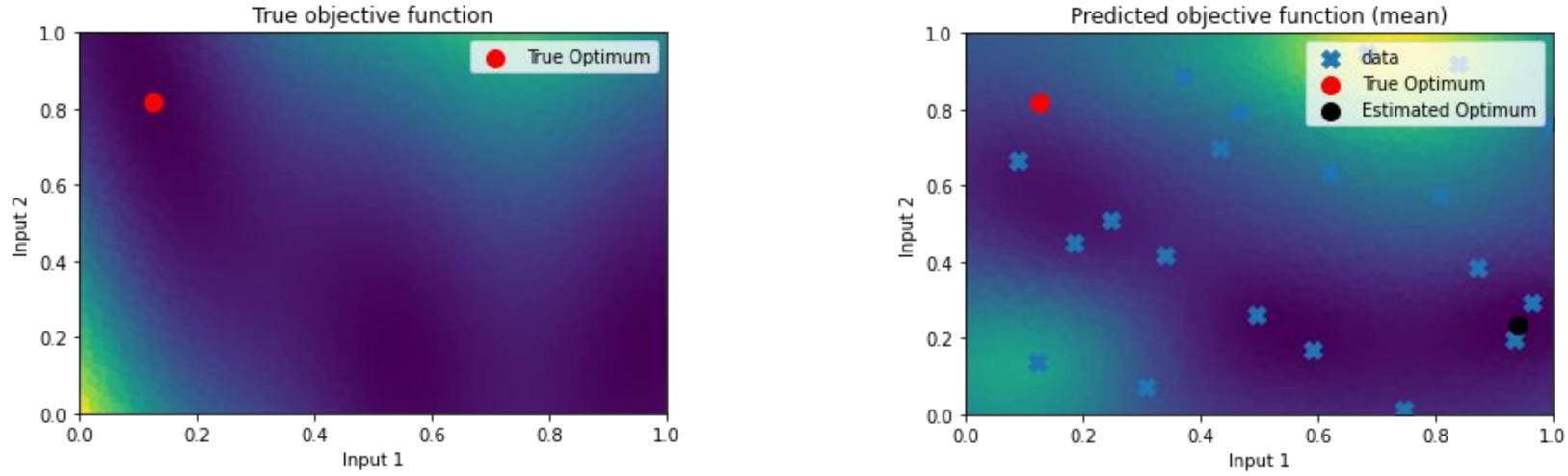
First Steps in Automatic Motor Calibration

Hacking a few things together to get a working algorithm

Standard Bayesian Optimization

Finding **global** minimum of a function

- We care about the **Estimated optimum**: the minimizer of our surrogate model's mean function
- Require model to be accurate around the all local optima (not the case below!)

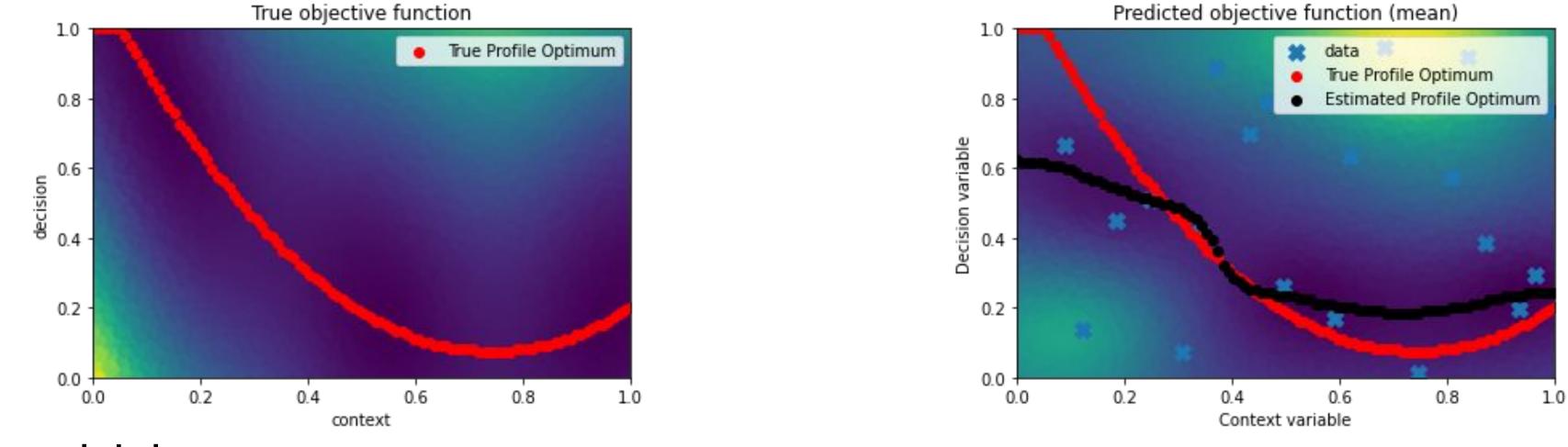


Secondmind

Predicted objective function (mean)

1) Profile Bayesian Optimization for learning lookup tables Finding optimal **decision** for all **contexts**

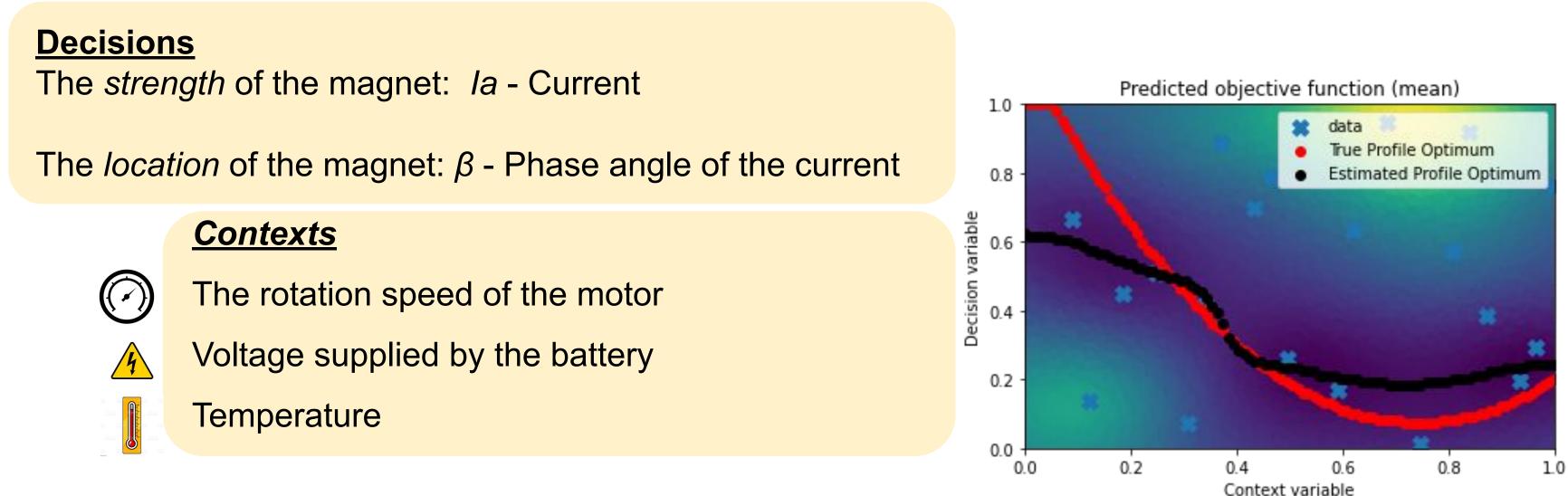
- We care about the **Profile Optimum**: the set of minimizers for each possible context
- i.e. a trajectory with elements accessed by optimizing a slice of the search space
- Require our model to be accurate across more than just the local minima



1) Profile Bayesian Optimization

Finding optimal **decision** for all **contexts**

- We care about the **Profile Optimum**: the set of minimizers for each possible context
- i.e. a trajectory with elements accessed by optimizing a slice of the search space
- Require our model to be accurate across more than just the local minima



1) Profile Bayesian Optimization

Finding optimal **decision** for all **contexts**

- We care about the **Profile Optimum**: the set of minimizers for each possible context
- i.e. a trajectory with elements accessed by optimizing a slice of the search space
- Require our model to be accurate across more than just the local minima

Secondmind

Predicted objective function (mean)

A surrogate model suitable for large data

- Standard GP incurs ${\cal O}(N^3)$

A surrogate model suitable for large data

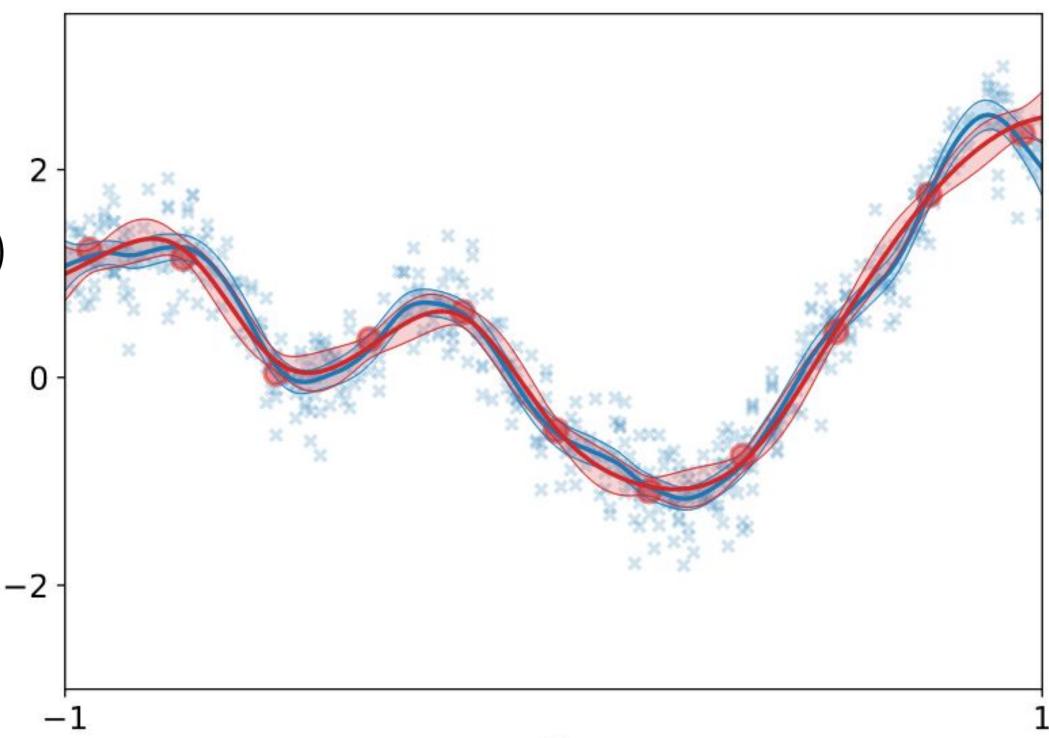
- Standard GP incurs ${\cal O}(N^3)$
- For us N>>1,000,000

A surrogate model suitable for large data

- Standard GP incurs $O(N^3)$
- For us N>>1,000,000
- Use SVGP (Hensman et al. 2013)

A surrogate model suitable for large data

- Standard GP incurs $O(N^3)$
- For us N>>1,000,000
- Use SVGP (Hensman et al. 2013)
- Replace with M representative points $O(NM^2)$



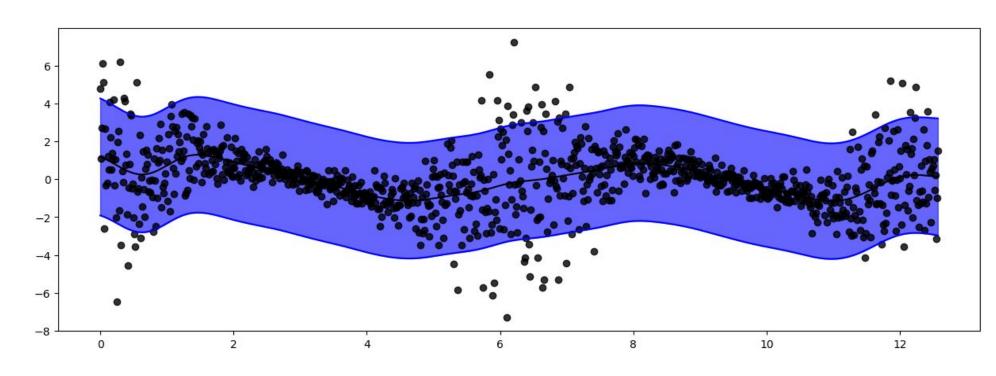
Secondmind

Courtesy of Nicolas Durrande

A **heteroscedastic** surrogate model suitable for large data

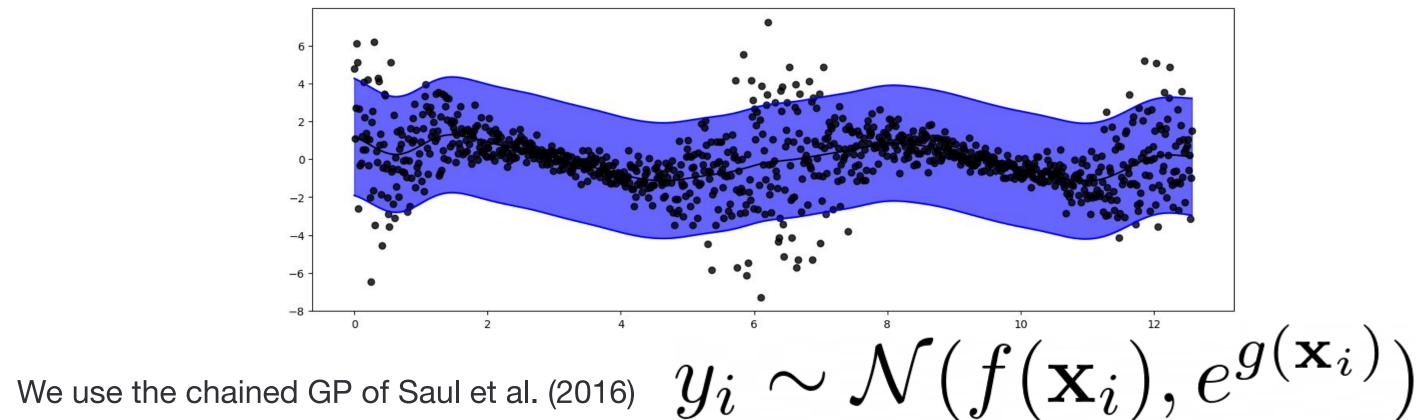
A **heteroscedastic** surrogate model suitable for large data

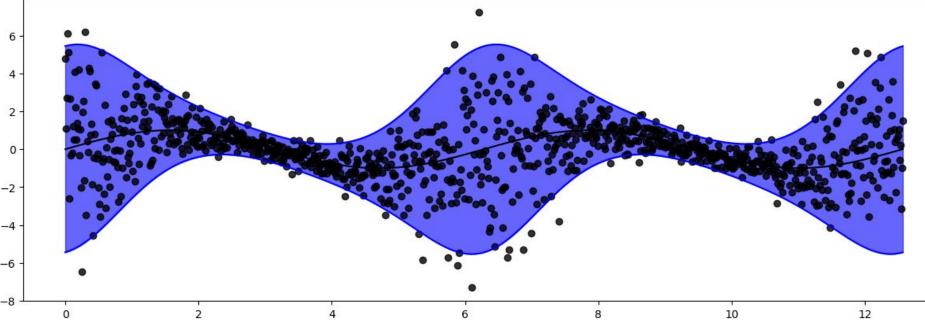
Standard GP (SVGP) assume fixed noise levels $y_i \sim \mathcal{N}(f(\mathbf{x}_i), \sigma^2)$



A heteroscedastic surrogate model suitable for large data

Standard GP (SVGP) assume fixed noise levels $y_i \sim \mathcal{N}(f(\mathbf{x}_i), \sigma^2)$





Secondmind

Unfortunately unsuitable for BO : Small tweaks required

• A balancing act to fit this model (two key failure modes)

 $y_i \sim \mathcal{N}(f(\mathbf{x}_i), e^{g(\mathbf{x}_i)})$

Unfortunately unsuitable for BO : Small tweaks required

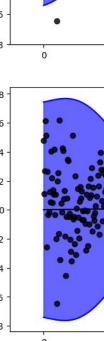
• A balancing act to fit this model (two key failure modes)

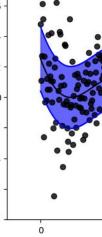
 $y_i \sim \mathcal{N}(f(\mathbf{x}_i), e^{g(\mathbf{x}_i)})$

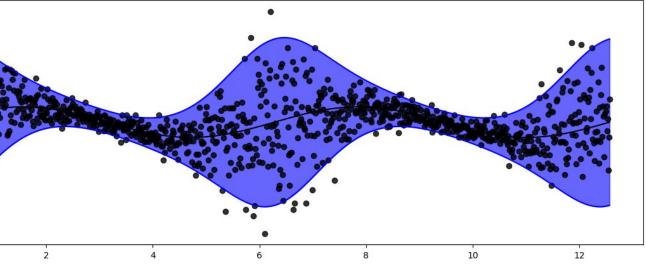
g dominates

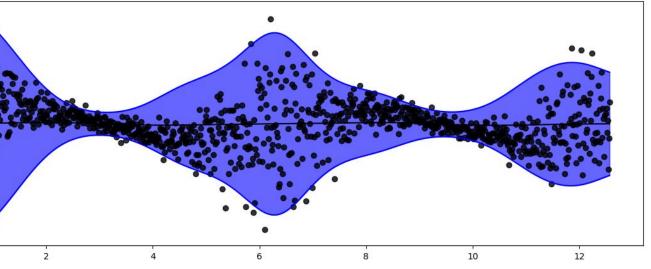
f dominates

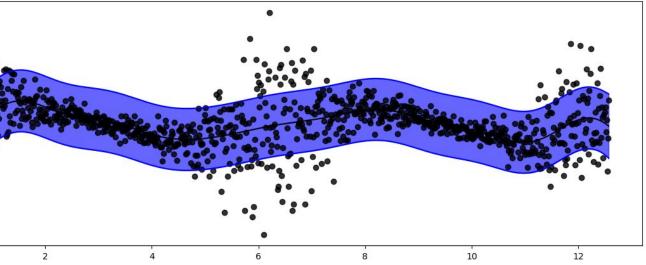
Desired fit











Unfortunately unsuitable for BO : Small tweaks required

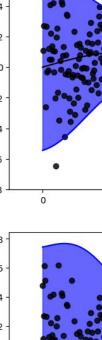
- A balancing act to fit this model (two key failure modes)
- Also relatively expensive to fit (for each BO step)

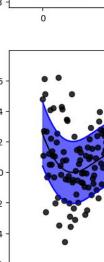
 $y_i \sim \mathcal{N}(f(\mathbf{x}_i), e^{g(\mathbf{x}_i)})$

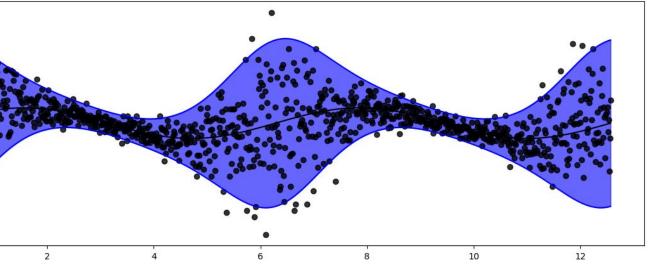
g dominates

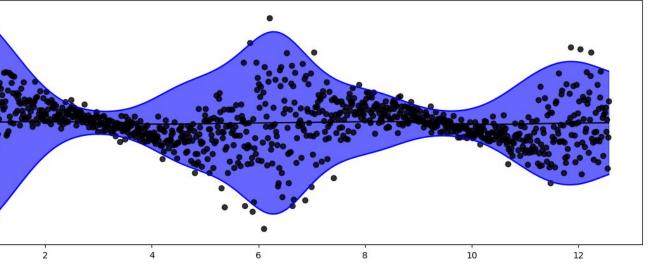
f dominates

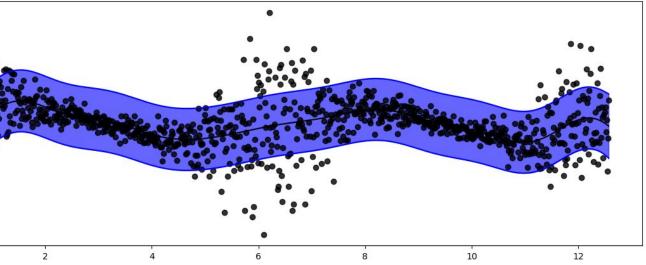
Desired fit







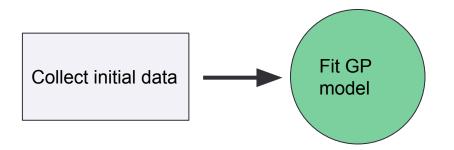




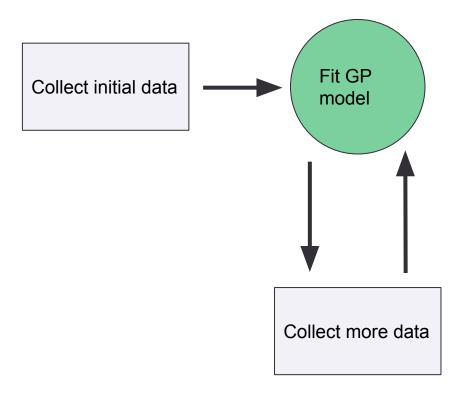
Tweaks required to use HetGP in practice

Collect initial data

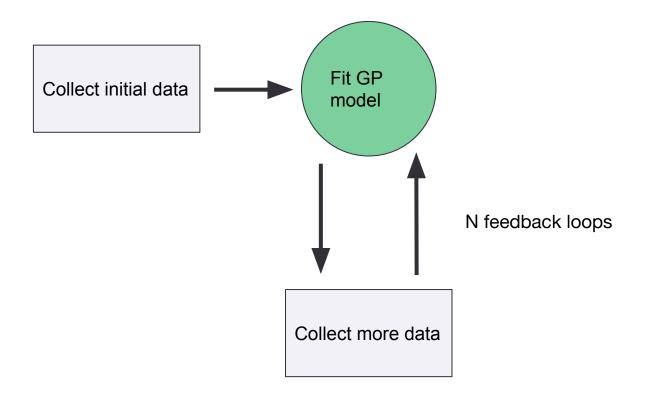
Tweaks required to use HetGP in practice



Tweaks required to use HetGP in practice

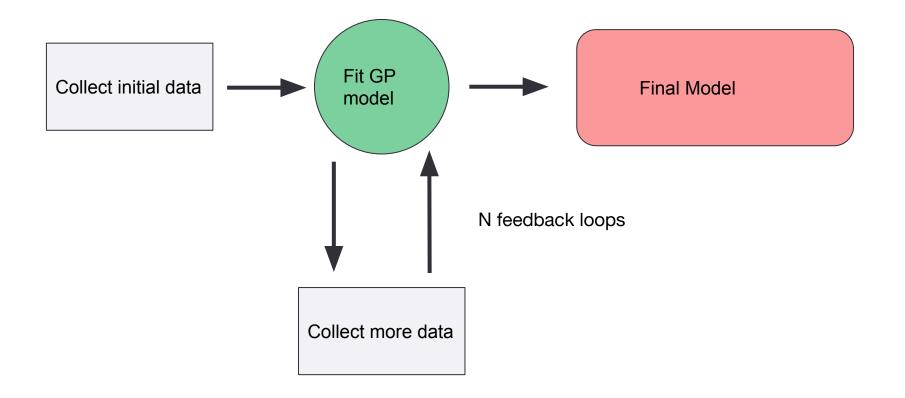


Tweaks required to use HetGP in practice



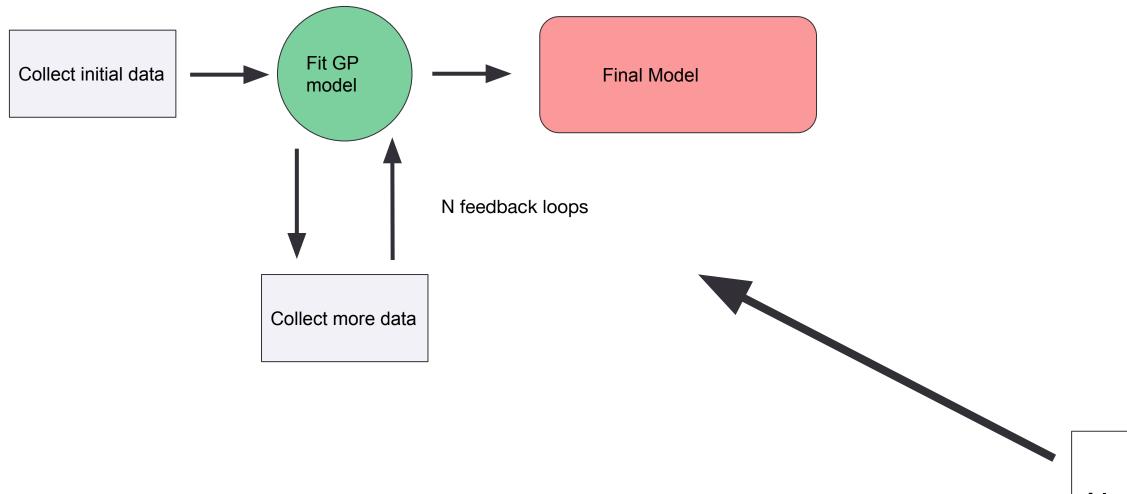
2) Scalable surrogate models

Tweaks required to use HetGP in practice



2) Scalable surrogate models

Tweaks required to use HetGP in practice

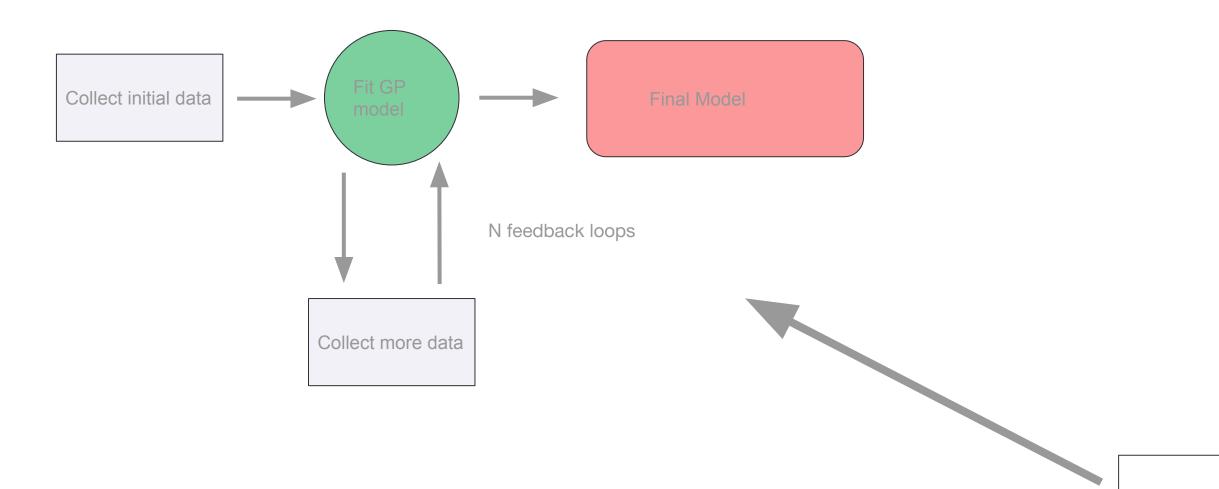


Secondmind

Almost an adversarial robustness test !

2) Scalable surrogate models

Tweaks required to use HetGP in practice



- Incremental model updates
- Clever initialisation
- Carefully defined optimisers
- Strong priors

Secondmind

Almost an adversarial robustness test !

A first ML solution

Secondmind

Proof of concept/value solution

Next Steps

Research time!

Motor Calibration

What else do we need?

- 6-10 inputs 🗸
- 2 objectives 🗸
- 1-3 constraints 📿

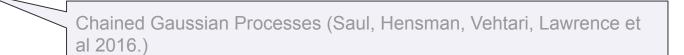
Bayesian Adaptive Reconstruction of Profile Optima (Ginsbourger et al. 2013)

- ?
- Noise is heteroscedastic and overall budget = millions of observations

- Large/variable cost of preparing the motor for an experiment
- experiment delivers 100-1000 observations at a time
- Risk adversity

Secondmind

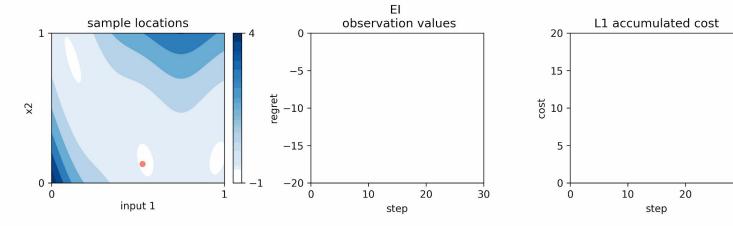
?



Avoid large costs for changing engine settings

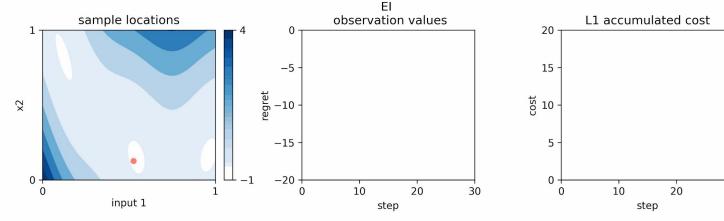
Avoid large costs for changing engine settings

• Need to minimise movement costs but still achieve global optimisation

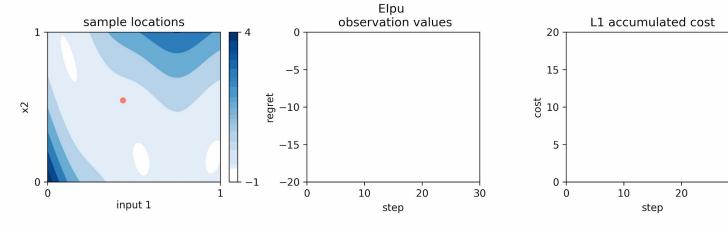


Avoid large costs for changing engine settings

• Need to minimise movement costs but still achieve global optimisation

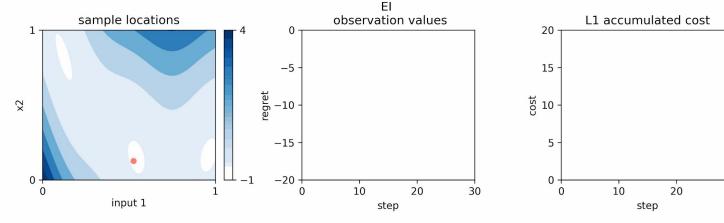


• Constraining maximum movement is not sufficient (needs to be non-myopic)

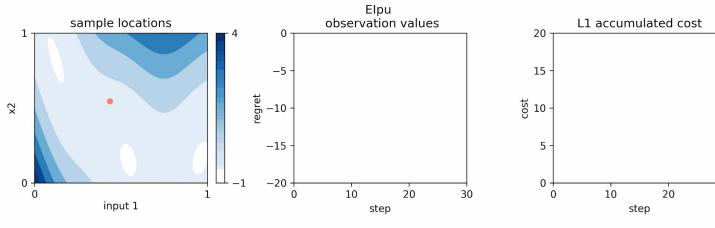


Avoid large costs for changing engine settings

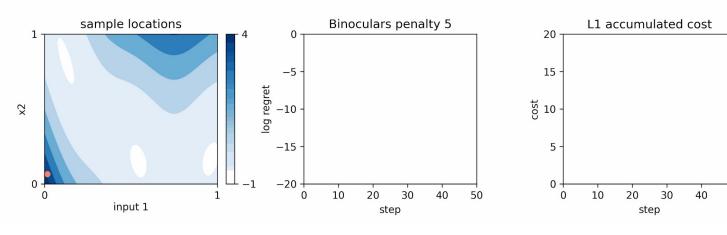
• Need to minimise movement costs but still achieve global optimisation



• Constraining maximum movement is not sufficient (needs to be non-myopic)



• We need a non-myopic strategy



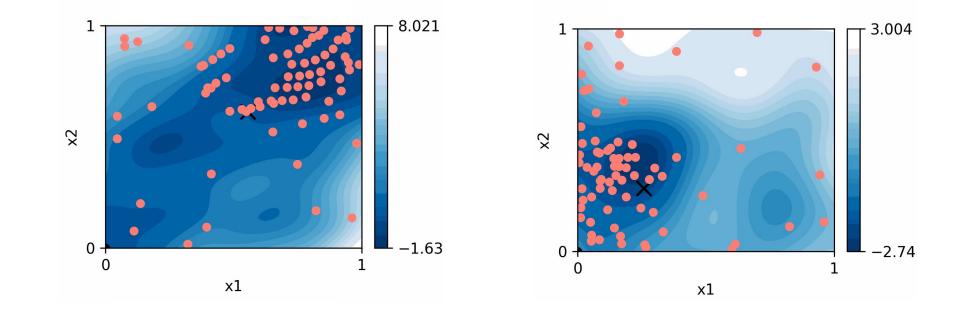
Learn a non-myopic cost-aware strategy using an LSTM

Learn a non-myopic cost-aware strategy using an LSTM

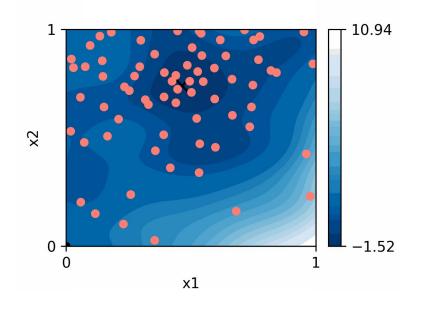
- Trained on GP samples (allow specification of prior knowledge)
- Instant inference provides scalability

Learn a non-myopic cost-aware strategy using an LSTM

- Trained on GP samples (allow specification of prior knowledge)
- Instant inference provides scalability

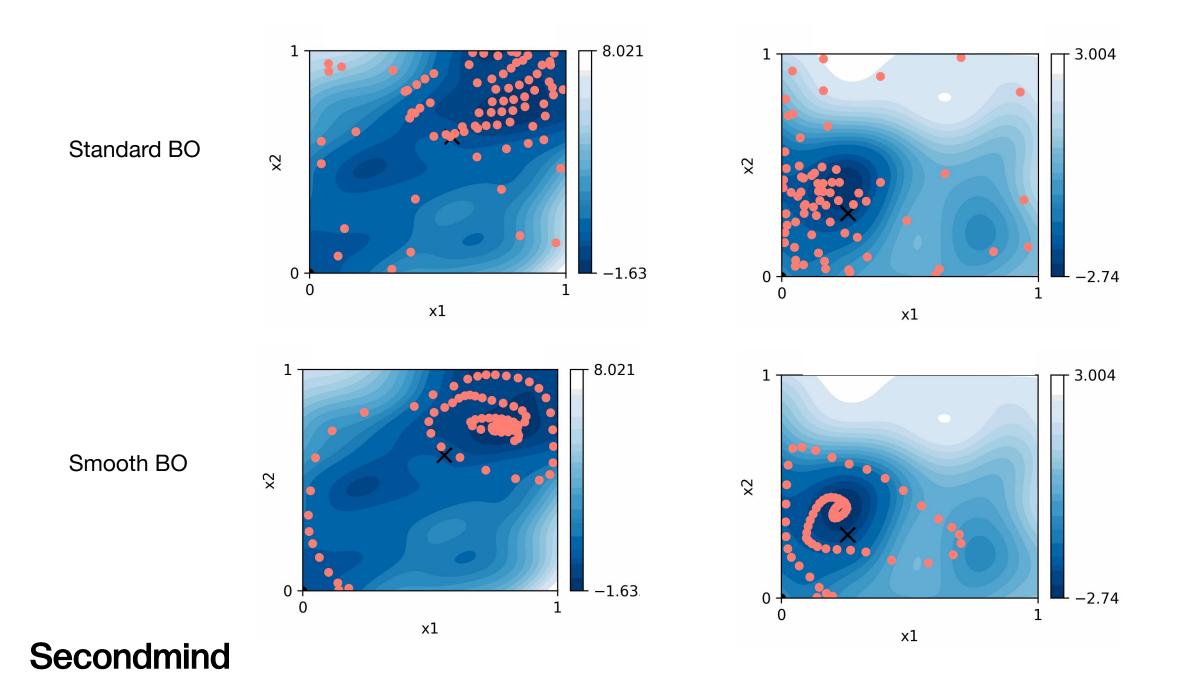


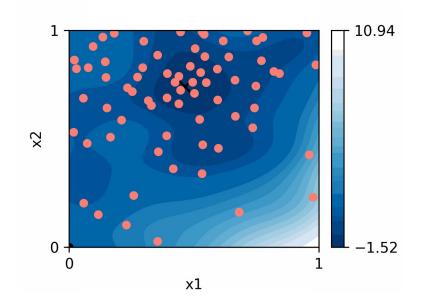
Standard BO

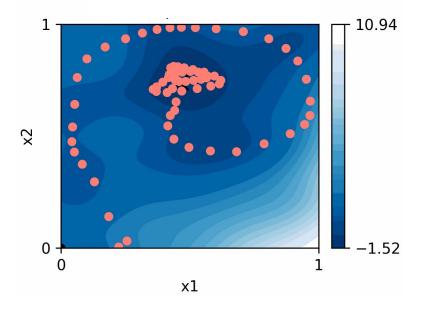


Learn a non-myopic cost-aware strategy using an LSTM

- Trained on GP samples (allow specification of prior knowledge)
- Instant inference provides scalability



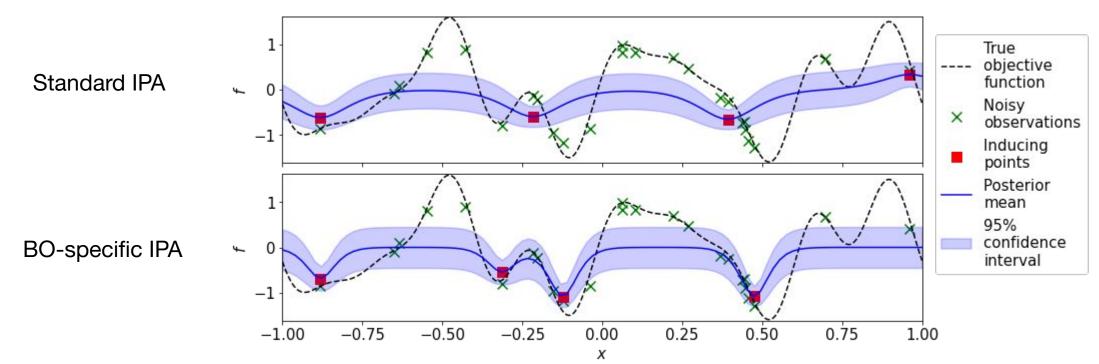




2) Inducing point allocation (IPA) in BO loops

Sparse Gaussian process should be customised to the task at hand

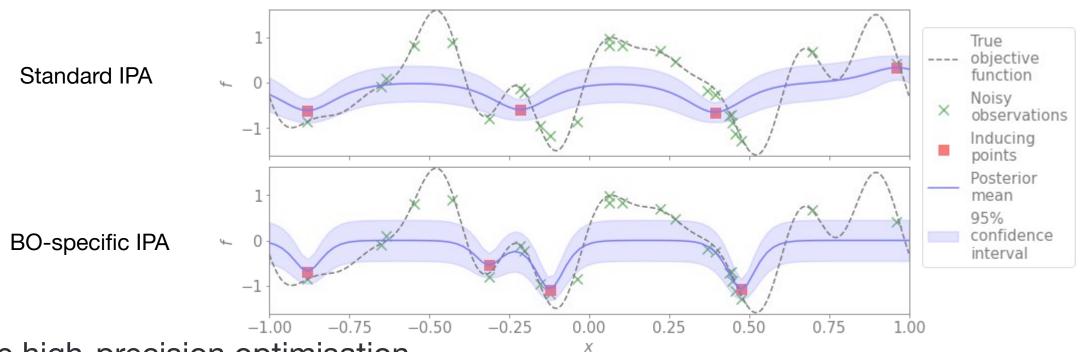
• Standard approaches for inducing point allocation are not suitable for BO



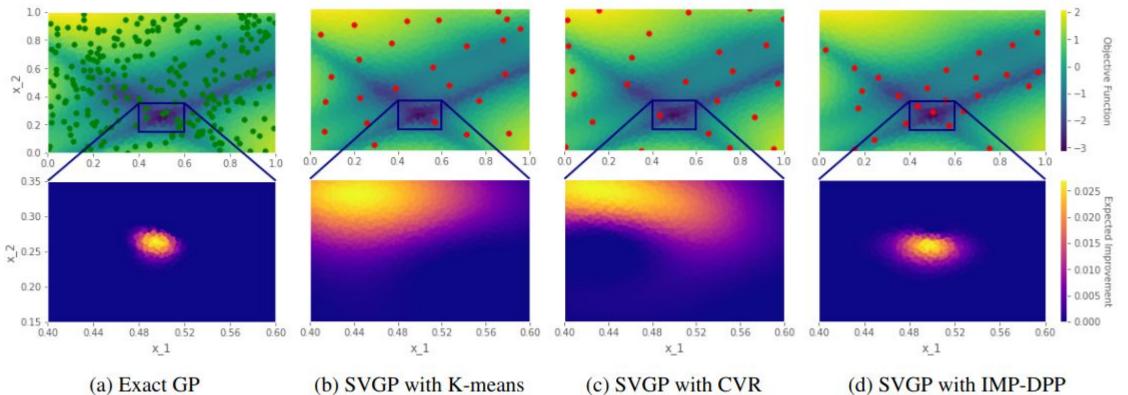
Inducing point allocation (IPA) in BO loops 2)

Sparse Gaussian process should be customised to the task at hand

Standard approaches for inducing point allocation are not suitable for BO



Cannot achieve high-precision optimisation



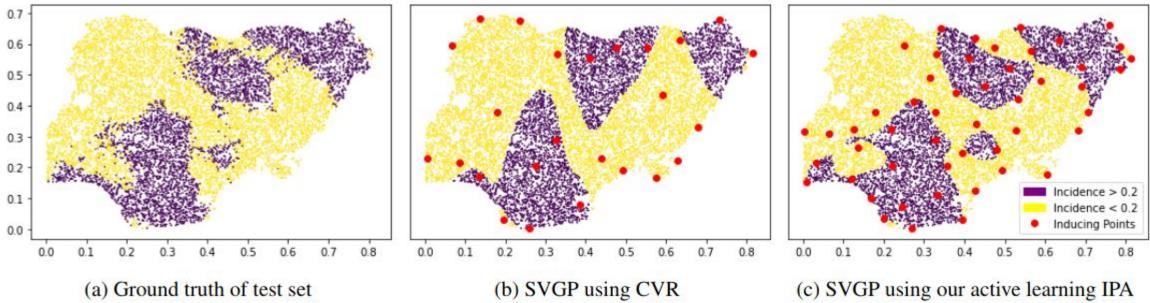
Secondmind

(d) SVGP with IMP-DPP

Inducing point allocation in BO loops 2)

Sparse Gaussian process should be customised to the task at hand

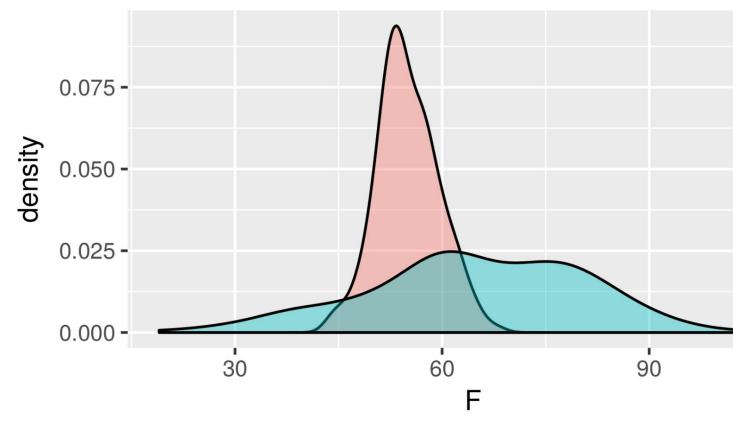
Existing IPA strategies are also unsuitable for active learning

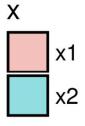


Risk averse Bayesian Optimisation 3)

Decision makers need to protect themselves from extreme events

Objective function is a conditional quantile rather than conditional expectation





Risk averse Bayesian Optimisation 3)

Decision makers need to protect themselves from extreme events

We model observations as quantile + noise

