Re-evaluating scientific claims with a multiverse analysis

Guest Lecture, L48 Machine Learning for the Physical World

Samuel J. Bell PhD Student, ML@CL, University of Cambridge

Outline

- 1. Motivation: efficient machine learning
- 2. Introducing the multiverse analysis
- 3. Modeling the machine learning multiverse
- 4. Case study 1: adaptive optimizers
- 5. Case study 2: large-batch generalization gap
- 6. Future stuff, discussion

Outline

1. Motivation: efficient machine learning

- 2. Introducing the multiverse analysis
- 3. Modeling the machine learning multiverse
- 4. Case study 1: adaptive optimizers
- 5. Case study 2: large-batch generalization gap
- 6. Future stuff, discussion

Are GANs Created Equal? A Large-Scale Study					
Mario Lucic*	Karol Kurach*	Marcin Michalski Google Brain	Olivier Bousquet	Sylvain Gelly	

"Despite a very rich research activity leading to numerous interesting GAN algorithms...

Are GANs Created Equal? A Large-Scale Study					
Mario Lucic* Ka	rol Kurach*	Marcin Michalski Google Brain	Olivier Bousquet	Sylvain Gelly	

"Despite a very rich research activity leading to numerous interesting GAN algorithms...

...we find that most models can reach similar scores with enough hyperparameter optimization and random restarts."

ON THE STATE OF THE ART OF EVALUATION IN NEURAL LANGUAGE MODELS

Gábor Melis[†], Chris Dyer[†], Phil Blunsom^{†‡} {melisgl,cdyer,pblunsom}@google.com [†]DeepMind [‡]University of Oxford

"Ongoing innovations ... state-of-the-art results on language modelling benchmarks...

ON THE STATE OF THE ART OF EVALUATION IN NEURAL LANGUAGE MODELS

Gábor Melis[†], Chris Dyer[†], Phil Blunsom^{†‡} {melisgl,cdyer,pblunsom}@google.com [†]DeepMind [‡]University of Oxford

"Ongoing innovations ... state-of-the-art results on language modelling benchmarks...

...standard LSTM architectures, when properly regularised, outperform more recent models."

Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches

Maurizio Ferrari Dacrema Politecnico di Milano, Italy maurizio.ferrari@polimi.it Paolo Cremonesi Politecnico di Milano, Italy paolo.cremonesi@polimi.it Dietmar Jannach University of Klagenfurt, Austria dietmar.jannach@aau.at

"...difficult to keep track of what represents the state-of-the-art at the moment...

Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches

Maurizio Ferrari Dacrema Politecnico di Milano, Italy maurizio.ferrari@polimi.it Paolo Cremonesi Politecnico di Milano, Italy paolo.cremonesi@polimi.it Dietmar Jannach University of Klagenfurt, Austria dietmar.jannach@aau.at

"...difficult to keep track of what represents the state-of-the-art at the moment...

...recently proposed neural methods do not even outperform conceptually or computationally simpler, sometimes long-known, algorithms."

Do Transformer Modifications Transfer Across Implementations and Applications?					
Sharan Narang*	Hyung Won Chung	Yi Tay	William Fedus		
${\bf Thibault} \ {\bf Fevry}^\dagger$	${\bf Michael}~{\bf Matena}^{\dagger}$	Karishma Malkan †	Noah Fiedel		
Noam Shazeer	${\bf Zhenzhong}{\bf Lan}^\dagger$	Yanqi Zhou	Wei Li		
Nan Ding	Jake Marcus	Adam Roberts	${\bf Colin} \ {\bf Raffel}^{\dagger}$		

"The research community has proposed copious modifications to the Transformer architecture...

Do Transformer Modifications Transfer Across Implementations and Applications?				
Sharan Narang*	Hyung Won Chung	Yi Tay	William Fedus	
${\bf Thibault} {\bf Fevry}^\dagger$	${\bf Michael}~{\bf Matena}^{\dagger}$	Karishma Malkan †	Noah Fiedel	
Noam Shazeer	${\bf Zhenzhong}{\bf Lan}^\dagger$	Yanqi Zhou	Wei Li	
Nan Ding	Jake Marcus	Adam Roberts	${\bf Colin} \ {\bf Raffel}^\dagger$	

"The research community has proposed copious modifications to the Transformer architecture...

...we find that most modifications do not meaningfully improve performance...

...performance improvements may strongly depend on implementation details."

Replication failures

• Each of these examples are replication failures

Replication failures

- Each of these examples are replication failures
- Every failure is wasted time, effort and resources

Replication failures

- Each of these examples are replication failures
- Every failure is wasted time, effort and resources
- This is bad for us as researchers, for scientific progress, and for society
 - e.g. the PhD student building on top of flawed foundations
 - e.g. wasted public funding poured into fruitless research
 - e.g. vast climate impact of pointless deep learning research

Robust scientific conclusions

- If we want our research to count, we need conclusions that are reproducible
 - i.e., other researchers can test the same claim and get the same result

Robust scientific conclusions

- If we want our research to count, we need conclusions that are reproducible
 - i.e., other researchers can test the same claim and get the same result
- But we also want conclusions that generalize
 - i.e., conclusions that hold in spite of irrelevant details changing

Robust scientific conclusions

- If we want our research to count, we need conclusions that are reproducible
 - i.e., other researchers can test the same claim and get the same result
- But we also want conclusions that generalize
 - i.e., conclusions that hold in spite of irrelevant details changing
- "Model X is the best" isn't useful if only true under specific conditions
 e.g., choice of benchmark, choice of hyperparameters, choice of architecture ...

Outline

- 1. Motivation: efficient machine learning
- 2. Introducing the multiverse analysis
- 3. Modeling the machine learning multiverse
- 4. Case study 1: adaptive optimizers
- 5. Case study 2: large-batch generalization gap
- 6. Future stuff, discussion

• Claim: Fertility influences women's religious & political preferences. [1]

- Claim: Fertility influences women's religious & political preferences. [1]
- Methods: 502 women surveyed about religiosity, political attitudes, relationship status and start date of menstrual cycle.

- Claim: Fertility influences women's religious & political preferences. [1]
- Methods: 502 women surveyed about religiosity, political attitudes, relationship status and start date of menstrual cycle.

- Claim: Fertility influences women's religious & political preferences. [1]
- Methods: 502 women surveyed about religiosity, political attitudes, relationship status and start date of menstrual cycle.

- Claim: Fertility influences women's religious & political preferences. [1]
- Methods: 502 women surveyed about religiosity, political attitudes, relationship status and start date of menstrual cycle.

• Results: Fertility x rel. status interaction effect

- Claim: Fertility influences women's religious & political preferences. [1]
- Methods: 502 women surveyed about religiosity, political attitudes, relationship status and start date of menstrual cycle.

• Durante et al. made a lot of choices about how to do their study [1]:

- Durante et al. made a lot of choices about how to do their study [1]:
- Which cycle days are considered "high fertility"?
 - Days 7-14, 6-14, 9-17 or 8-14?

- Durante et al. made a lot of choices about how to do their study [1]:
- Which cycle days are considered "high fertility"?
 - Days 7-14, 6-14, 9-17 or 8-14?
- How to estimate next menstrual onset?
 - Reported or estimated cycle length?

- Durante et al. made a lot of choices about how to do their study [1]:
- Which cycle days are considered "high fertility"?
 - Days 7-14, 6-14, 9-17 or 8-14?
- How to estimate next menstrual onset?
 - Reported or estimated cycle length?
- What counts as "in a relationship"?
 - Does "dating" mean "single"?

- Durante et al. made a lot of choices about how to do their study [1]:
- Which cycle days are considered "high fertility"?
 - Days 7-14, 6-14, 9-17 or 8-14?
- How to estimate next menstrual onset?
 - Reported or estimated cycle length?
- What counts as "in a relationship"?
 - Does "dating" mean "single"?
- Outlier exclusion criteria

- Durante et al. made a lot of choices about how to do their study [1]:
- Which cycle days are considered "high fertility"? -
 - Days 7-14, 6-14, 9-17 or 8-14?
- How to estimate next menstrual onset?
 - Reported or estimated cycle length?
- What counts as "in a relationship"?
 - Does "dating" mean "single"?
- Outlier exclusion criteria

Religiosity (Study 2)

[1] Steegen et al. (2016). Increasing Transparency Through a Multiverse Analysis. Perspectives on Psychological Science.

Social political attitudes

[1] Steegen et al. (2016). Increasing Transparency Through a Multiverse Analysis. Perspectives on Psychological Science.

• So, Durante et al.'s claims aren't robust

- So, Durante et al.'s claims aren't robust
 - They're specific to *arbitrary implementation details*
 - Given a different set of choices, the conclusion could just as easily be false

- So, Durante et al.'s claims aren't robust
 - They're specific to *arbitrary implementation details*
 - Given a different set of choices, the conclusion could just as easily be false
- Multiverse analysis: redoing the analysis at every point in the space of possible choices, and systematically reviewing the conclusions.
Multiverse analysis

- So, Durante et al.'s claims aren't robust
 - They're specific to *arbitrary implementation details*
 - Given a different set of choices, the conclusion could just as easily be false
- Multiverse analysis: redoing the analysis at every point in the space of possible choices, and systematically reviewing the conclusions.
- What does this have to do with machine learning?

The ML multiverse

• Just like Durante et al., we make decisions all the time

The ML multiverse

- Just like Durante et al., we make decisions all the time
- "Invention X improves model performance"
 - Model architectures
 - Baselines for comparison
 - Benchmark datasets
 - Training sets
 - Evaluation metrics
 - Termination criteria
 - Countless hyperparameters
 - Hyperparameter search spaces
 - Hyperparameter optimization approaches
 - Implementation libraries

The ML multiverse

- Just like Durante et al., we make decisions all the time
- "Invention X improves model performance"
 - Model architectures
 - Baselines for comparison
 - Benchmark datasets
 - Training sets
 - Evaluation metrics
 - Termination criteria
 - Countless hyperparameters
 - Hyperparameter search spaces
 - Hyperparameter optimization approaches
 - Implementation libraries

Outline

- 1. Motivation: efficient machine learning
- 2. Introducing the multiverse analysis
- 3. Modeling the machine learning multiverse
- 4. Case study 1: adaptive optimizers
- 5. Case study 2: large-batch generalization gap
- 6. Future stuff, discussion

Lots of choices

Lots of choices

Continuous dimensions (e.g., most hyperparameters)

╋

Lots of choices

÷

Continuous dimensions (e.g., most hyperparameters)

A large and intractable search space

Lots of choices

┿

Continuous dimensions (e.g., most hyperparameters)

A large and **intractable** search space

Solution: Model the multiverse for efficient exploration

Definitions

• Evaluation function, ℓ

Definitions

• Evaluation function, ℓ • Search space, χ

Definitions

• Evaluation function, ℓ • Search space, χ

Approach

- 1. Sample an initial design, $X_0 \sim \mathcal{X}$
- 2. Evaluate ℓ at each point, $Y_0 = \ell(X_0)$
- 3. Fit a GP model f to X_0, Y_0

Definitions

• Evaluation function, ℓ • Search space, χ

Approach

- 1. Sample an initial design, $X_0 \sim \mathcal{X}$
- 2. Evaluate ℓ at each point, $Y_0 = \ell(X_0)$
- 3. Fit a GP model f to X_0, Y_0
- 4. Use an acquisition function a on f to sample and evaluate a new batch X_i , Y_i

Definitions

• Evaluation function, ℓ • Search space, χ

Approach

- 1. Sample an initial design, $X_0 \sim \mathcal{X}$
- 2. Evaluate ℓ at each point, $Y_0 = \ell(X_0)$
- 3. Fit a GP model f to X_0, Y_0
- 4. Use an acquisition function a on f to sample and evaluate a new batch X_i , Y_i
- 5. Repeat steps 2–4 until we have a high-confidence picture of the multiverse

Definitions

• Evaluation function, ℓ • Search space, χ

Approach

- 1. Sample an initial design, $X_0 \sim \mathcal{X}$
- 2. Evaluate ℓ at each point, $Y_0 = \ell(X_0)$
- 3. Fit a GP model f to X_0, Y_0
- 4. Use an acquisition function a on f to sample and evaluate a new batch X_i , Y_i
- 5. Repeat steps 2–4 until we have a high-confidence picture of the multiverse

Bayesian experimental design

• Initial design: Sobol sequence is a *low-discrepancy* sequence

- Initial design: Sobol sequence is a *low-discrepancy* sequence
- GP surrogate:

•
$$y_i = f(x_i) + \epsilon_i$$
, $\epsilon_i \sim \mathcal{N}$

• $f \sim \mathsf{GP}(0,k)$

- Initial design: Sobol sequence is a *low-discrepancy* sequence
- GP surrogate:
 - $y_i = f(x_i) + \epsilon_i$, $\epsilon_i \sim \mathcal{N}$
 - $f \sim \mathsf{GP}(0, k)$
- Acquisition function: Integrated posterior variance reduction (IVR) [1]
 - Next point is the one which lowers the overall variance the most

- Initial design: Sobol sequence is a *low-discrepancy* sequence
- GP surrogate:
 - $y_i = f(x_i) + \epsilon_i$, $\epsilon_i \sim \mathcal{N}$
 - $f \sim \mathsf{GP}(0, k)$
- Acquisition function: Integrated posterior variance reduction (IVR) [1]
 - Next point is the one which lowers the overall variance the most

•
$$a(x_{i+1}; X_i, Y_i) = \int_{\mathcal{X}} \sigma^2(p; X_{i+1}, Y_{i+1}) - \sigma^2(p; X_i, Y_i) dp$$

• Monte Carlo approximate the integral over the whole search space

- In Bayesian optimization, we might use an optimization-focused acquisition function, like Upper Confidence Bound (UCB) [1]
 - Next point is either: expected high reward, or high information gain

- In Bayesian optimization, we might use an optimization-focused acquisition function, like Upper Confidence Bound (UCB) [1]
 - Next point is either: expected high reward, or high information gain
 - $a(x_{i+1}; X_i, Y_i) = \mu(x_{i+1}; X_i, Y_i) + \beta^{1/2} \sigma^2(x_{i+1}; X_i, Y_i)$

- In Bayesian optimization, we might use an optimization-focused acquisition function, like Upper Confidence Bound (UCB) [1]
 - Next point is either: expected high reward, or high information gain
 - $a(x_{i+1}; X_i, Y_i) = \mu(x_{i+1}; X_i, Y_i) + \beta^{1/2} \sigma^2(x_{i+1}; X_i, Y_i)$

- In Bayesian optimization, we might use an optimization-focused acquisition function, like Upper Confidence Bound (UCB) [1]
 - Next point is either: expected high reward, or high information gain
 - $a(x_{i+1}; X_i, Y_i) = \mu(x_{i+1}; X_i, Y_i) + \beta^{1/2} \sigma^2(x_{i+1}; X_i, Y_i)$

[1] Srinivas et al. (2010) Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML.

- In Bayesian optimization, we might use an optimization-focused acquisition function, like Upper Confidence Bound (UCB) [1]
 - Next point is either: expected high reward, or high information gain
 - $a(x_{i+1}; X_i, Y_i) = \mu(x_{i+1}; X_i, Y_i) + \beta^{1/2} \sigma^2(x_{i+1}; X_i, Y_i)$

Putting it together

- We want to understand the generality and robustness of conclusions
- So we explore the effect of researcher choices
- By modelling the multiverse using a GP surrogate
- Selecting the most informative points to evaluate using IVR

Outline

- 1. Motivation: efficient machine learning
- 2. Introducing the multiverse analysis
- 3. Modeling the machine learning multiverse
- 4. Case study 1: adaptive optimizers
- 5. Case study 2: large-batch generalization gap
- 6. Future stuff, discussion

• Two common optimizers for training deep neural networks:

- Two common optimizers for training deep neural networks:
 - SGD w. momentum
 - $\theta_t = \theta_{t-1} \alpha d_t$, $d_t = \mu d_{t-1} + g_t$

- Two common optimizers for training deep neural networks:
 - SGD w. momentum
 - $\theta_t = \theta_{t-1} \alpha d_t$, $d_t = \mu d_{t-1} + g_t$
 - Adam [1]

•
$$d_t = \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

- Two common optimizers for training deep neural networks:
 - SGD w. momentum
 - $\theta_t = \theta_{t-1} \alpha d_t$, $d_t = \mu d_{t-1} + g_t$
 - Adam [1]

•
$$d_t = \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

• Lots of back and forth about which is best e.g. [2, 3]

[1] Kingma & Ba (2014). Adam: A method for stochastic optimization. *ICLR*.
[2] Wilson et al. (2017). The marginal value of adaptive gradient methods in machine learning. *NeurIPS*.
[3] Choi et al. (2019). On empirical comparisons of optimizers for deep learning. *ICLR*.

Multiverse 1: Are adaptive optimizers helpful?

 ℓ : acc_{SGD} – acc_{Adam}

X: LR $\times \epsilon$

[1] Sobol (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Mathematics and Computers in Simulation*.

- 1. No conclusive "best" optimizer
- 2. Conclusions vary by learning rate
- 3. No effect of ϵ

[1] Sobol (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation.

Outline

- 1. Motivation: efficient machine learning
- 2. Introducing the multiverse analysis
- 3. Modeling the machine learning multiverse
- 4. Case study 1: adaptive optimizers
- 5. Case study 2: large-batch generalization gap
- 6. Future stuff, discussion
- When training neural networks, we use *mini-batch* SGD
- But how large should the batch be?

- When training neural networks, we use *mini-batch* SGD
- But how large should the batch be?
- Some evidence of a *generalization gap* at large batch sizes, e.g. [1]
- Some evidence against that, e.g. [2]

[1] Keskar et al. (2016). On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. *ICLR*.
[2] Hoffer et al. (2017). Train longer, generalize better: closing the generalization gap in large batch training of neural networks. *NeurIPS*.

MV 2: Is there a large batch generalization gap?

l: acc

X: LR \times batch size \times dataset \times model

Interlude: multi-fidelity modeling

• How do we model categorical parameters?

Interlude: multi-fidelity modeling

- How do we model categorical parameters?
- Intrinsic Coregionalization Model [1, 2]
 - $K(X,X) = B \otimes k(X,X)$
 - $B_d = \boldsymbol{w}_d \boldsymbol{w}_d^{\mathsf{T}} + \operatorname{diag}(\boldsymbol{\kappa}_d)$

[1] Helterbrand & Cressie (1994). Universal cokriging under intrinsic coregionalization. Mathematical Geology.[2] Alvarez et al. (2012). Kernels for vector-valued functions: A review. Foundations and Trends in Machine Learning.

Interlude: multi-fidelity modeling

- How do we model categorical parameters?
- Intrinsic Coregionalization Model [1, 2]
 - $K(X,X) = B \otimes k(X,X)$
 - $B_d = \boldsymbol{w}_d \boldsymbol{w}_d^{\mathsf{T}} + \operatorname{diag}(\boldsymbol{\kappa}_d)$
- Treat each dataset x model pair as a separate function
 - $K(X,X) = B_m \otimes B_d \otimes k(X,X)$
 - $B_m = \boldsymbol{w}_m \boldsymbol{w}_m^{\mathsf{T}} + \operatorname{diag}(\boldsymbol{\kappa}_m)$
 - $B_d = \boldsymbol{w}_d \boldsymbol{w}_d^{\mathsf{T}} + \operatorname{diag}(\boldsymbol{\kappa}_d)$

[1] Helterbrand & Cressie (1994). Universal cokriging under intrinsic coregionalization. Mathematical Geology.[2] Alvarez et al. (2012). Kernels for vector-valued functions: A review. Foundations and Trends in Machine Learning.

Sensitivity Analysis

Sensitivity Analysis

- 1. Consistent across model/dataset
- 2. Batch size x LR interaction
- 3. No gap if scaled together

Outline

- 1. Motivation: efficient machine learning
- 2. Introducing the multiverse analysis
- 3. Modeling the machine learning multiverse
- 4. Case study 1: adaptive optimizers
- 5. Case study 2: large-batch generalization gap
- 6. Future stuff, discussion

Critique and open questions

• We still have to make choices about our search spaces too

Critique and open questions

- We still have to make choices about our search spaces too
- We still have to make choices about how to model the multiverse
 - GP kernel, hyperparameters, etc...

Critique and open questions

- We still have to make choices about our search spaces too
- We still have to make choices about how to model the multiverse
 - GP kernel, hyperparameters, etc...
- What about compute cost and climate impact?

- Making the multiverse bigger
 - more datasets, more models, termination criteria, ...

- Making the multiverse bigger
 - more datasets, more models, termination criteria, ...
- What other multiverse analyses could we run? What conclusions don't you believe?

- Making the multiverse bigger
 - more datasets, more models, termination criteria, ...
- What other multiverse analyses could we run? What conclusions don't you believe?
- Multiverse analysis of the effect of "fairness" definitions

- Making the multiverse bigger
 - more datasets, more models, termination criteria, ...
- What other multiverse analyses could we run? What conclusions don't you believe?
- Multiverse analysis of the effect of "fairness" definitions
- Accounting for heteroscedasticity and a principled tradeoff between replication and sampling a new point [1]

Summary

- We want conclusions that are robust, general and useful
- The multiverse analysis is a framework for exploring the effect of choices on scientific conclusions

Summary

- We want conclusions that are robust, general and useful
- The multiverse analysis is a framework for exploring the effect of choices on scientific conclusions
- We make the multiverse tractable by modelling it with a GP
- And we explore it using Bayesian experimental design

Summary

- We want conclusions that are robust, general and useful
- The multiverse analysis is a framework for exploring the effect of choices on scientific conclusions
- · We make the multiverse tractable by modelling it with a GP
- And we explore it using Bayesian experimental design
- Case study 1: Conclusions about best optimizer are sensitive to LR
- Case study 2: No generalization gap if batch size scaled with LR

Modeling the Machine Learning Multiverse

https://arxiv.org/abs/2206.05985

Neil Lawrence

@lawrennd

Samuel Bell

@neurosamuel

sjb326@cam.ac.uk

Onno Kampman @KampmanOnno

Jesse Dodge @JesseDodge