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“Despite a very rich research activity leading to numerous 
interesting GAN algorithms…

…we find that most models can reach similar scores with enough 
hyperparameter optimization and random restarts.”
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Replication failures
• Each of these examples are replication failures

• Every failure is wasted time, effort and resources

• This is bad for us as researchers, for scientific progress, and for 
society
• e.g. the PhD student building on top of flawed foundations
• e.g. wasted public funding poured into fruitless research
• e.g. vast climate impact of pointless deep learning research
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Robust scientific conclusions
• If we want our research to count, we need conclusions that are 

reproducible
• i.e., other researchers can test the same claim and get the same result

• But we also want conclusions that generalize
• i.e., conclusions that hold in spite of irrelevant details changing

• “Model X is the best” isn’t useful if only true under specific conditions
• e.g., choice of benchmark, choice of hyperparameters, choice of architecture 

…
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An example from social psychology
• Claim: Fertility influences women’s religious & political preferences. [1] 
• Methods: 502 women surveyed about religiosity, political attitudes, 

relationship status and start date of menstrual cycle.

[1] Durante et al. (2013). The Fluctuating Female Vote: Politics, Religion, and the Ovulatory Cycle. Psychological Science.

• Results: Fertility x rel. status 
interaction effect
• Do we believe it?
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Durante’s degrees of freedom
• Durante et al. made a lot of choices about how to do their study [1]:

• Which cycle days are considered “high fertility”?
• Days 7-14, 6-14, 9-17 or 8-14?

• How to estimate next menstrual onset?
• Reported or estimated cycle length?

• What counts as “in a relationship”? 
• Does “dating” mean “single”?

• Outlier exclusion criteria

[1] Steegen et al. (2016). Increasing Transparency Through a Multiverse Analysis. Perspectives on Psychological Science.

210
possible
combinations 
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Multiverse analysis
• So, Durante et al.’s claims aren’t robust

• They’re specific to arbitrary implementation details
• Given a different set of choices, the conclusion could just as easily be false

• Multiverse analysis: redoing the analysis at every point in the space of 
possible choices, and systematically reviewing the conclusions.

• What does this have to do with machine learning?
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The ML multiverse
• Just like Durante et al., we make decisions all the time

• “Invention X improves model performance”
• Model architectures
• Baselines for comparison
• Benchmark datasets
• Training sets
• Evaluation metrics
• Termination criteria
• Countless hyperparameters
• Hyperparameter search spaces
• Hyperparameter optimization approaches
• Implementation libraries
…

One
huge
multiverse



The ML multiverse
• Just like Durante et al., we make decisions all the time

• “Invention X improves model performance”
• Model architectures
• Baselines for comparison
• Benchmark datasets
• Training sets
• Evaluation metrics
• Termination criteria
• Countless hyperparameters
• Hyperparameter search spaces
• Hyperparameter optimization approaches
• Implementation libraries
…

One
huge
multiverse



The ML multiverse
• Just like Durante et al., we make decisions all the time

• “Invention X improves model performance”
• Model architectures
• Baselines for comparison
• Benchmark datasets
• Training sets
• Evaluation metrics
• Termination criteria
• Countless hyperparameters
• Hyperparameter search spaces
• Hyperparameter optimization approaches
• Implementation libraries
…

One
huge
multiverse



Outline
1. Motivation: efficient machine learning
2. Introducing the multiverse analysis
3. Modeling the machine learning multiverse
4. Case study 1: adaptive optimizers
5. Case study 2: large-batch generalization gap
6. Future stuff, discussion



Key challenge
Lots of choices

+
Continuous dimensions (e.g., most hyperparameters)

=
A large and intractable search space

Solution: Model the multiverse for efficient exploration
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Efficient multiverse exploration
Definitions
• Evaluation function, 

Approach
1. Sample an initial design, 𝑋! ∼ 𝒳
2. Evaluate ℓ at each point, 𝑌! = ℓ 𝑋!
3. Fit a GP model 𝑓 to  𝑋!, 𝑌!
4. Use an acquisition function 𝑎 on 𝑓 to sample and evaluate 

a new batch 𝑋", 𝑌"
5. Repeat steps 2–4 until we have a high-confidence picture 

of the multiverse

𝒳ℓ • Search space, 

Bayesian 
experimental 
design
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Bayesian experimental design
• Initial design: Sobol sequence is a low-discrepancy sequence

• GP surrogate:
• 𝑦" = 𝑓 𝑥" + ϵ" , ϵ" ∼ 𝒩
• 𝑓 ∼ GP 0, 𝑘

• Acquisition function: Integrated posterior variance reduction (IVR) [1]
• Next point is the one which lowers the overall variance the most

• 𝑎 𝑥!"#; 𝑋! , 𝑌! = ∫𝒳 σ
% 𝑝; 𝑋!"#, 𝑌!"# − σ% 𝑝; 𝑋! , 𝑌! 𝑑𝑝

• Monte Carlo approximate the integral over the whole search space

[1] Sacks et al. (1989) Design and analysis of computer experiments. Statistical Science.
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To explore or optimize?

• In Bayesian optimization, we might use an optimization-focused 
acquisition function, like Upper Confidence Bound (UCB) [1]
• Next point is either: expected high reward, or high information gain
• 𝑎 𝑥"#$; 𝑋", 𝑌" = 𝜇 𝑥"#$; 𝑋", 𝑌" + 𝛽 ⁄! " σ& 𝑥"#$; 𝑋", 𝑌"

[1] Srinivas et al. (2010) Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML.
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Putting it together
• We want to understand the generality and robustness of conclusions

• So we explore the effect of researcher choices

• By modelling the multiverse using a GP surrogate

• Selecting the most informative points to evaluate using IVR 
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Adam vs. SGD
• Two common optimizers for training deep neural networks:

• SGD w. momentum
• θ' = θ'($ − α𝑑' , 𝑑' = µ𝑑'($ + 𝑔'

• Adam [1]
• 𝑑' =

)*#
)+##,

• Lots of back and forth about which is best e.g. [2, 3]

[1] Kingma & Ba (2014). Adam: A method for stochastic optimization. ICLR.
[2] Wilson et al. (2017). The marginal value of adaptive gradient methods in machine learning. NeurIPS.
[3] Choi et al. (2019). On empirical comparisons of optimizers for deep learning. ICLR.
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Adam vs. SGD

Multiverse 1: Are adaptive optimizers helpful?

Χ: LR × 𝜖

ℓ: acc678 − acc9:;<
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1. No conclusive “best” optimizer

2. Conclusions vary by learning rate

3. No effect of 𝜖

Sensitivity Analysis [1]

[1] Sobol (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation.
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The large-batch generalization gap
• When training neural networks, we use mini-batch SGD

• But how large should the batch be?

• Some evidence of a generalization gap at large batch sizes, e.g. [1]

• Some evidence against that, e.g. [2]

[1] Keskar et al. (2016). On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. ICLR.
[2] Hoffer et al. (2017). Train longer, generalize better: closing the generalization gap in large batch training of neural networks. NeurIPS.
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The large-batch generalization gap

MV 2: Is there a large batch generalization gap?

Χ: LR × batch size × dataset × model

ℓ: acc



Interlude: multi-fidelity modeling
• How do we model categorical parameters?
• Intrinsic Coregionalization Model [1, 2]
• 𝐾 𝑋, 𝑋 = 𝐵 ⊗ 𝑘 𝑋, 𝑋
• 𝐵! = 𝒘!𝒘!

" + diag 𝛋!

• Treat each dataset x model pair as a separate function
• 𝐾 𝑋, 𝑋 = 𝐵# ⊗𝐵!⊗𝑘 𝑋,𝑋
• 𝐵# = 𝒘#𝒘#

" + diag 𝜿#
• 𝐵! = 𝒘!𝒘!

" + diag 𝛋!

[1] Helterbrand & Cressie (1994). Universal cokriging under intrinsic coregionalization. Mathematical Geology.
[2] Alvarez et al. (2012). Kernels for vector-valued functions: A review. Foundations and Trends in Machine Learning.
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Critique and open questions
• We still have to make choices about our search spaces too

• We still have to make choices about how to model the multiverse
• GP kernel, hyperparameters, etc…

• What about compute cost and climate impact?
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Extensions and future ideas
• Making the multiverse bigger

• more datasets, more models, termination criteria, …

• What other multiverse analyses could we run? What conclusions don’t you 
believe? 

• Multiverse analysis of the effect of “fairness” definitions

• Accounting for heteroscedasticity and a principled tradeoff between 
replication and sampling a new point [1] 

[1] Binois et al. (2019). Replication or exploration? Sequential design for stochastic simulation experiments. Technometrics.
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Summary

• We want conclusions that are robust, general and useful

• The multiverse analysis is a framework for exploring the effect of choices on scientific 

conclusions

• We make the multiverse tractable by modelling it with a GP

• And we explore it using Bayesian experimental design

• Case study 1: Conclusions about best optimizer are sensitive to LR

• Case study 2: No generalization gap if batch size scaled with LR
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