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“I checked it very thoroughly, said the computer, and that quite definitely

is the answer. I think the problem, to be quite honest with you, is that

you’ve never actually known what the question is.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)
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Old friends, new friends

Linear regression:

Y = β0 + β1X1 + . . . βpXp + ε, ε ∼ N (0, σ2)

Bayesian linear regression:

Y = β0 + β1X1 + . . . βpXp + ε, ε ∼ N (0, σ2), β ∼ N (0,Σp)

Bayesian non-linear regression (Gaussian process):

Y = f (X1, . . . ,Xp) + ε, ε ∼ N (0, σ2), f ∼ GP(0,K )

Y =

dF∑
k

wkφk(X1, . . . ,Xp) + ε, ε ∼ N (0, σ2), w ∼ N (0,ΣdF )
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What can I do with a regression model?

1. I can make a predictions:
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What can I do with a regression model?

2. I can learn about about a latent property of f (x).
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What can I do with a regression model?

2. I can learn about about a property of f (x).
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What can I do with a regression model?

3. I can estimate a causal effect:
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Ok, but what is exactly a causal effect?

T causally affects Y if intervening on T changes the distribution of Y.
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Ok, but what is exactly a causal effect?

P(recovery) 6= P(Recovery |do(Dose = 3))

Dose Recovery

� A causal effect IS a ‘physical’ mechanisms.

� A causal effect IS NOT a property of the data.

� Intervening = experiment (change the laws of physics).

� do notation to represent an experiment.

� In general P(Y |do(T = t)) 6= P(Y |T = t)
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Another example - drug 2

Increasing the dose in drug 2 seems to make patients to spend more time

at the hospital (!!).
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Days of recovery vs Dose - drug 2

Age is a confounder. The drug is effective but older people suffer the

disease more severely and require a larger dose.
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Days of recovery vs. Dose - drug 2

Dose Recovery

Age
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Correlation is not causation ... but is very easy to forget!
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Simpson’s paradox

’A trend that appears in several different groups of data may disappear or

reverse when these groups are combined.’
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Example: Kidney stones

Treatment Recovery

Success recovery rates of two treatments for kidney stones:

Treatment A Treatment B

78% (273/350) 83% (289/350)

Which treatment is better?

Treatment B

Ok, wait, are we sure? let’s have a look to the data again....
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Confounders

When the less effective treatment (B) is applied more frequently to less

severe cases, it can appear to be a more effective treatment.

Treatment A Treatment B

Small stones 93% (81/87) 87% (234/270)

Large stones 73% (192/263) 69% (55/80)

Total 78% (273/350) 83% (289/350)

The size of the stone is a confounder.

Treatment Recovery

Size stone
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Solution

Weighting the effect of each treatment by the number of cases.

Treatment A Treatment B

Small stones 93% (81/87) 87% (234/270)

Large stones 73% (192/263) 69% (55/80)

Total 78% (273/350) 83% (289/350)

P(Recover |do(T = A)) = P(small)P(Recover |small ,A)

+ P(big)P(Recover |big ,A)

= 0.8325

P(Recover |do(T = B)) = P(small)P(Recover |small ,B)

+ P(big)P(Recover |big ,B)

= 0.7788

Treatment A is indeed better.
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How to remove the effect of confounders

General adjustment formula

If Z is a admissible adjustment set (confounders) then:

P(Y |do(T = t)) =
∑
z

P(Y |T = t,Z = z)P(Z = z)

P(Y |do(T = t)) =

∫
P(Y |T = t,Z = z)P(Z = z)dz

� Causal effects with observational data! No experiments!

� We only need to control by Z , nothing else.

� Knowing and observing all elements in Z is very hard.

� Adjusting by variables not in Z can be a terrible idea...
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Berkson’s paradox

‘Two independent events A and B may become dependent when

conditioning on a common effect (collider)’.
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Berkson’s paradox

Respiratory d. Hospitalization Bone d.

We know that the is no causal effect between the two diseases:

P(Bone|do(Respiratory = Yes)) = P(Bone)

General population

Bone disease

Respiratory

disease
Yes No %Yes

Yes 17 207 8.4%

No 184 2376 7.7%
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Berkson’s paradox

Respiratory dis. Hospitalization Bone dis.

General population
Hospitalizations

last 6 months

Bone disease Bone disease

Respiratory

disease
Yes No %Yes Yes No %Yes

Yes 17 207 7.6% 5 15 25%

No 184 2376 7.2% 18 219 7.6%
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Berkson’s paradox

Respiratory dis. Hospitalization Bone dis.

� The respiratory and bone diseases are independent.

� But they are conditionally dependent given hospitalization.

Adjusting by hospitalization is wrong!

P(Bone|do(Re. = Yes)) = P(Bone) 6=
∫

P(Bone|Re. = Yes,Hos.)P(Hos.)
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Estimating an causal effect

Case 1: I can run experiments. EASY.

� Intervene in the world and check.

Case 2: I cannot run experiments. HARD.

� What is the causal relationship of interest?

� What experiment could capture the causal effect of interest?

� What is your identification strategy (confounders)?

� What is your mode of statistical inference (model)?
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From regression to causation: average treatment effect

T: Treatment

Z: Confounders

Y: Response

Let’s compute ATE (t1, t2) := E[Y |do(T = t1)]− E[Y |do(T = t2)].

Step 1: Identification.

Find and observe all confounders Z or substitute confounders.
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From regression to causation: average treatment effect

Step 2: Estimation.

Build a model that predicts the response Y using T, Z.

Linear regression: E[Y |T ,Z ] = w0 + τT + wZ

Gaussian process: E[Y |T ,Z ] = m(T ,Z )

where m(·) is the posterior mean of a Gaussian process.
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From regression to causation: average treatment effect

Step 3: Marginalization

Approximate EZ [E[Y |T = t1,Z ]]− EZ [E[Y |T = t2,Z ]]

For a sample {ti , zi , ti}ni=1 compute

ˆATE (t1, t2) =
1

n

n∑
i=1

m(T = t1,Z = zi )−
1

n

n∑
i=1

m(T = t2,Z = zi )
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Fun fact

If you are using a linear regression model where

E[Y |T ,Z ] = w0 + τT + wZ

then:

� E[Y |do(T = t1)] = τ t1

�

∂E[Y |do(T=t)]
∂t = τ

Linear models are pretty useful to compute causal effects!
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Summary

Cool, isn’t it? Now we can:

� Emulate experiments without experimentation.

� Learning how the world works, not just describing it.

� We can do all this with a Gaussian processes! ;-).

Ok, not it is time for some fairy tales...
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Statistical fairy tale 1

’To estimate an effect all I need is

more data points’

False!!

Identification and estimation are

orthogonal steps.
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Statistical fairy tale 2

‘To estimate an effect it is fine if I

just add all the observed variables to

the model’

False!!

Using colliders as confounders may

introduce dependencies where they

don’t exist.
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Statistical fairy tale 3

’I can do hypotesis-free causal

inference’

False!!

Causal inference ALWAYS involve

making causal (and modelling)

assumptions. These can be made

explicit using causal graphs.
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Statistical fairy tale 4

’All the validation I need to do, I

can do it with my dataset.

False!!

It is usually VERY hard to know if

there are unobserved confounders.

In those cases, external validation is

needed (an experiment).

Unknown unknowns
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Questions?
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