Regression, causality, statistical paradoxes and other fairy tales

Javier González

November 17, 2020

Microsoft Research Cambridge

"I checked it very thoroughly, said the computer, and that quite definitely is the answer. I think the problem, to be quite honest with you, is that you've never actually known what the question is."

Douglas Adams, The Hitchhiker's Guide to the Galaxy (1979)

Linear regression:

$$Y = \beta_0 + \beta_1 X_1 + \dots \beta_p X_p + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Linear regression:

$$Y = \beta_0 + \beta_1 X_1 + \dots \beta_p X_p + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Bayesian linear regression:

$$Y = \beta_0 + \beta_1 X_1 + \ldots \beta_p X_p + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2), \ \beta \sim \mathcal{N}(0, \Sigma_p)$$

Linear regression:

$$Y = \beta_0 + \beta_1 X_1 + \ldots \beta_p X_p + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

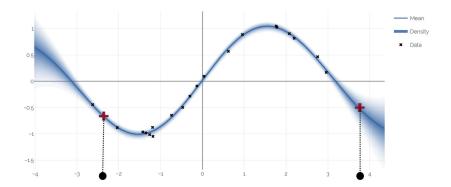
Bayesian linear regression:

$$Y = \beta_0 + \beta_1 X_1 + \ldots \beta_p X_p + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2), \ \beta \sim \mathcal{N}(0, \Sigma_p)$$

Bayesian non-linear regression (Gaussian process):

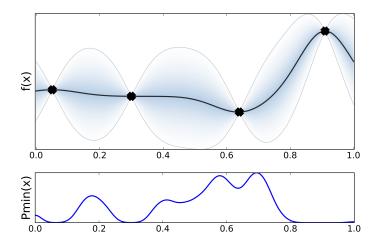
$$Y = f(X_1, \dots, X_p) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2), \quad f \sim \mathcal{GP}(0, \mathcal{K})$$
$$Y = \sum_{k}^{d_F} w_k \phi_k(X_1, \dots, X_p) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2), \quad w \sim \mathcal{N}(0, \Sigma_{d_F})$$

1. I can make a predictions:



What can I do with a regression model?

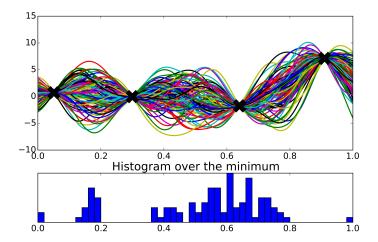
2. I can learn about a bout a latent property of f(x).



ML and the physical world

What can I do with a regression model?

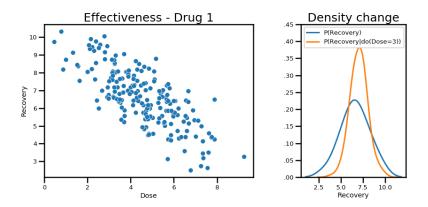
2. I can learn about about a property of f(x).



What can I do with a regression model?

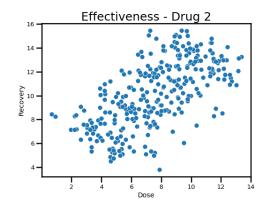
3. I can estimate a causal effect:

T causally affects Y if **intervening** on T changes the distribution of Y.



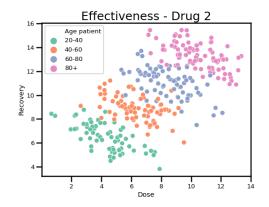
 $\mathbb{P}(recovery) \neq \mathbb{P}(Recovery | do(Dose = 3))$

- A causal effect IS a 'physical' mechanisms.
- A causal effect IS NOT a property of the data.
- Intervening = experiment (change the laws of physics).
- do notation to represent an experiment.
- In general $\mathbb{P}(Y|do(T = t)) \neq \mathbb{P}(Y|T = t)$



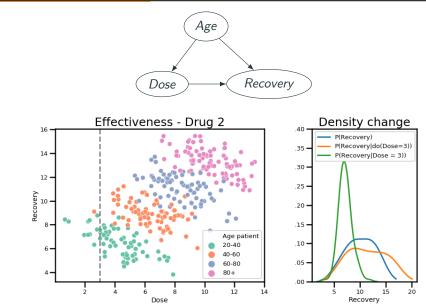
Increasing the dose in drug 2 seems to make patients to spend more time at the hospital (!!).

Days of recovery vs Dose - drug 2

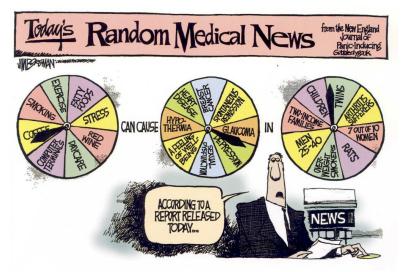


Age is a **confounder**. The drug is effective but older people suffer the disease more severely and require a larger dose.

Days of recovery vs. Dose - drug 2



ML and the physical world



Source: Borgman, J (1997). The Cincinnati Enquirer. King Features Syndicate. ML and the physical world

'A trend that appears in several different groups of data may disappear or reverse when these groups are combined.'

Success recovery rates of two treatments for kidney stones:

Treatment A	Treatment B		
78% (273/350)	83% (289/350)		

Which treatment is better?

Success recovery rates of two treatments for kidney stones:

Treatment A	Treatment B		
78% (273/350)	83% (289/350)		

Which treatment is better? Treatment B

Success recovery rates of two treatments for kidney stones:

Treatment A	Treatment B		
78% (273/350)	83% (289/350)		

Which treatment is better? **Treatment B**

Ok, wait, are we sure? let's have a look to the data again....

When the less effective treatment (B) is applied more frequently to less severe cases, it can appear to be a more effective treatment.

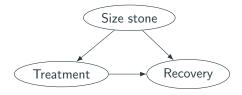
	Treatment A	Treatment B
Small stones	93% (81/87)	87% (234/270)
Large stones	73% (192/263)	69% (55/80)
Total	78% (273/350)	83% (289/350)

The size of the stone is a confounder.

When the less effective treatment (B) is applied more frequently to less severe cases, it can appear to be a more effective treatment.

	Treatment A	Treatment B
Small stones	93% (81/87)	87% (234/270)
Large stones	73% (192/263)	69% (55/80)
Total	78% (273/350)	83% (289/350)

The size of the stone is a confounder.



Solution

Weighting the effect of each treatment by the number of cases.

	Treatment A	Treatment B
Small stones	93% (81/87)	87% (234/270)
Large stones	73% (192/263)	69% (55/80)
Total	78% (273/350)	83% (289/350)

Solution

Weighting the effect of each treatment by the number of cases.

	Treatment A	Treatment B
Small stones	93% (81/87)	87% (234/270)
Large stones	73% (192/263)	69% (55/80)
Total	78% (273/350)	83% (289/350)

 $\mathbb{P}(Recover|do(T = A)) = \mathbb{P}(small)\mathbb{P}(Recover|small, A)$

+ $\mathbb{P}(big)\mathbb{P}(Recover|big, A)$

= 0.8325

Solution

Weighting the effect of each treatment by the number of cases.

	Treatment A	Treatment B
Small stones	93% (81/87)	87% (234/270)
Large stones	73% (192/263)	69% (55/80)
Total	78% (273/350)	83% (289/350)

 $\mathbb{P}(Recover|do(T = A)) = \mathbb{P}(small)\mathbb{P}(Recover|small, A)$

+
$$\mathbb{P}(big)\mathbb{P}(Recover|big, A)$$

$$=$$
 0.8325

 $\mathbb{P}(Recover|do(T = B)) = \mathbb{P}(small)\mathbb{P}(Recover|small, B)$

+ $\mathbb{P}(big)\mathbb{P}(Recover|big, B)$

= 0.7788

Treatment A is indeed better.

General adjustment formula

If Z is a admissible adjustment set (confounders) then:

$$\mathbb{P}(Y|do(T = t)) = \sum_{z} \mathbb{P}(Y|T = t, Z = z) \mathbb{P}(Z = z)$$
$$\mathbb{P}(Y|do(T = t)) = \int \mathbb{P}(Y|T = t, Z = z) \mathbb{P}(Z = z) dz$$

- Causal effects with observational data! No experiments!
- We only need to control by Z, nothing else.
- Knowing and observing all elements in Z is very hard.
- Adjusting by variables not in Z can be a terrible idea...

'Two independent events A and B may become dependent when conditioning on a common effect (collider)'.

We know that the is no causal effect between the two diseases:

 $\mathbb{P}(Bone|do(Respiratory = Yes)) = \mathbb{P}(Bone)$

	General population				
	Bone disease				
Respiratory	Yes	No	%Yes		
disease	Tes	NO	70 Tes		
Yes	17	207	8.4%		
No	184	2376	7.7%		

	Constal population			Hospitalizations		
	General population			las	st 6 mo	onths
	Bone disease			B	one dis	sease
Respiratory disease	Yes	No	%Yes	Yes	No	%Yes
Yes	17	207	7.6%	5	15	25%
No	184	2376	7.2%	18	219	7.6%

- The respiratory and bone diseases are independent.
- But they are conditionally dependent given hospitalization.

Adjusting by hospitalization is wrong!

 $\mathbb{P}(\textit{Bone}|\textit{do}(\textit{Re.}=\textit{Yes})) = \mathbb{P}(\textit{Bone}) \neq \int \mathbb{P}(\textit{Bone}|\textit{Re.}=\textit{Yes},\textit{Hos.})\mathbb{P}(\textit{Hos.})$

Case 1: I can run experiments. EASY.

• Intervene in the world and check.

Case 2: I cannot run experiments. HARD.

- What is the causal relationship of interest?
- What experiment could capture the causal effect of interest?
- What is your identification strategy (confounders)?
- What is your mode of statistical inference (model)?

- T: Treatment
- Z: Confounders
- Y: Response

Let's compute $ATE(t_1, t_2) := \mathbb{E}[Y|do(T = t_1)] - \mathbb{E}[Y|do(T = t_2)].$

Step 1: Identification.

Find and observe all confounders Z or substitute confounders.

Step 2: Estimation.

Build a model that predicts the response Y using T, Z.

Linear regression: $\mathbb{E}[Y|T, Z] = w_0 + \tau T + wZ$ Gaussian process: $\mathbb{E}[Y|T, Z] = m(T, Z)$

where $m(\cdot)$ is the posterior mean of a Gaussian process.

Step 3: Marginalization

Approximate $\mathbb{E}_{Z}[\mathbb{E}[Y|T = t_1, Z]] - \mathbb{E}_{Z}[\mathbb{E}[Y|T = t_2, Z]]$

For a sample $\{t_i, z_i, t_i\}_{i=1}^n$ compute

$$A\hat{T}E(t_1, t_2) = \frac{1}{n} \sum_{i=1}^n m(T = t_1, Z = z_i) - \frac{1}{n} \sum_{i=1}^n m(T = t_2, Z = z_i)$$

If you are using a linear regression model where

$$\mathbb{E}[Y|T, Z] = w_0 + \tau T + wZ$$

then:

•
$$\mathbb{E}[Y|do(T = t_1)] = \tau t_1$$

• $\frac{\partial \mathbb{E}[Y|do(T = t)]}{\partial t} = \tau$

Linear models are pretty useful to compute causal effects!

Cool, isn't it? Now we can:

- Emulate experiments without experimentation.
- Learning how the world works, not just describing it.
- We can do all this with a Gaussian processes! ;-).

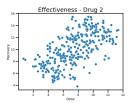
Ok, not it is time for some fairy tales...

'To estimate an effect all I need is more data points'

'To estimate an effect all I need is more data points'

False!!

Identification and estimation are orthogonal steps.

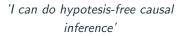


'To estimate an effect it is fine if I just add all the observed variables to the model'

'To estimate an effect it is fine if I just add all the observed variables to the model'

False!!

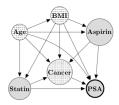
Using colliders as confounders may introduce dependencies where they don't exist.



'I can do hypotesis-free causal inference'

False!!

Causal inference ALWAYS involve making causal (and modelling) assumptions. These can be made explicit using causal graphs.



'All the validation I need to do, I can do it with my dataset.

False!!

It is usually VERY hard to know if there are unobserved confounders. In those cases, external validation is needed (an experiment).

Unknown unknowns

Questions?