\[ f_{\text{high}}(x) = f_{\text{err}}(x) + \rho \,f_{\text{low}}(x) \]
\[ f_{t}(x) = f_{t}(x) + \rho_{t-1} \,f_{t-1}(x), \quad t=1,\dots, T \]
\[ \begin{pmatrix} \mathbf{X}_{\text{low}} \\ \mathbf{X}_{\text{high}} \end{pmatrix} \]
\[ \begin{bmatrix} f_{\text{low}}\left(h\right)\\ f_{\text{high}}\left(h\right) \end{bmatrix} \sim GP \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k_{\text{low}} & \rho k_{\text{low}} \\ \rho k_{\text{low}} & \rho^2 k_{\text{low}} + k_{\text{err}} \end{bmatrix} \end{pmatrix} \]
\[ \mathbf{X}= \begin{pmatrix} x_{\text{low};0}^0 & x_{\text{low};0}^1 & x_{\text{low};0}^2 & 0\\ x_{\text{low};1}^0 & x_{\text{low};1}^1 & x_{\text{low};1}^2 & 0\\ x_{\text{low};2}^0 & x_{\text{low};2}^1 & x_{\text{low};2}^2 & 0\\ x_{\text{high};0}^0 & x_{\text{high};0}^1 & x_{\text{high};0}^2 & 1\\ x_{\text{high};1}^0 & x_{\text{high};1}^1 & x_{\text{high};1}^2 & 1 \end{pmatrix}\quad \mathbf{Y}= \begin{pmatrix} y_{\text{low};0}\\ y_{\text{low};1}\\ y_{\text{low};2}\\ y_{\text{high};0}\\ y_{\text{high};1} \end{pmatrix} \]
\[ f_{\text{low}}(x) = \sin(8\pi x) \]
\[ f_{\text{high}}(x) = \left(x- \sqrt{2}\right) \, f_{\text{low}}^2 \]
\[ f_{\text{high}}(x) = \rho( \, f_{\text{low}}(x)) + \delta(x) \]
\[\mathbf{ y}= \mathbf{ f}_4\left(\mathbf{ f}_3\left(\mathbf{ f}_2\left(\mathbf{ f}_1\left(\mathbf{ x}\right)\right)\right)\right)\]
Composite multivariate function
\[ \mathbf{g}(\mathbf{ x})=\mathbf{ f}_5(\mathbf{ f}_4(\mathbf{ f}_3(\mathbf{ f}_2(\mathbf{ f}_1(\mathbf{ x}))))). \]
Gaussian processes give priors over functions.
Elegant properties:
For particular covariance functions they are ‘universal approximators’, i.e. all functions can have support under the prior.
Gaussian derivatives might ring alarm bells.
E.g. a priori they don’t believe in function ‘jumps’.
From a process perspective: process composition.
A (new?) way of constructing more complex processes based on simpler components.
|
|
|
|
Can a Deep Gaussian process help?
Deep GP is one GP feeding into another.
\[ \mathbf{ x}_{t+1} = f(\mathbf{ x}_{t},\textbf{u}_{t}) \] where \(\textbf{u}_t\) is the action force, \(\mathbf{ x}_t = (p_t, v_t)\) is the vehicle state
\[ \mathbf{ x}_{t+1} =g(\mathbf{ x}_{t},\textbf{u}_{t}) \]
\[ f_i\left(\mathbf{ x}\right) = \rho f_{i-1}\left(\mathbf{ x}\right) + \delta_i\left(\mathbf{ x}\right), \]
\[ f_i\left(\mathbf{ x}\right) = g_{i}\left(f_{i-1}\left(\mathbf{ x}\right)\right) + \delta_i\left(\mathbf{ x}\right), \]
book: The Atomic Human
twitter: @lawrennd
podcast: The Talking Machines
newspaper: Guardian Profile Page
blog posts: