
Machine Learning in the Physical World
Sequential Decision Making Under Uncertainty

Carl Henrik Ek

October 31, 2024

Abstract

This week we are going to make use of our previous knowledge in modelling and use it for black-box
optimisation. The idea here is that we have a function that we want to optimise, i.e. find the minima1,
the tricky thing is that we do not know the form of the function but we can evaluate it. This means
that we will use a Gaussian process to specify a surrogate for the unknown function and use our belief
in this surrogate as a guide to our search. When we build statistical models we quantify our knowlege
using probabilities which specifies our beliefs. This means that we specify not only what we know but
also how well we know it. The main thing that we want to get across in this lab is showing how useful
and important this concept can be.

Lets assume that we have a function f(x) that is explicitly unknown that we want to find the minima of. We
will further assume that it is possible to evaluate the function but that each evaluation is expensive. This
means that the problem that we have on our hands is to search the input domain for the extreme point but
do so in a manner that we minimise the number of evaluation that we make of the function. One approach
to address this type of problem is to use a technique called Bayesian Optimisation and that is the focus of
this lab.

Searching for the extremum of explicitly unknown functions is problem that appears in many applications.
The first use of Bayesian methods for approaching this is usually attributed to Močkus, 1975 a Lithuanian
mathematician. This important work was slightly overlooked at the time but recently it has gotten the
attention that it deserves. The reason for this is that with increasingly complicated models with enormous
cost for training being able to efficiently utilise the data have become very important. The use of Bayesian
optimisation for learning how to set parameters in complicated unstructured models2 is often attributed to
Snoek et al., 2012 who really put these types of techniques at the forefront of modern machine learning. Even
though the are used everywhere this is often not reported particularly well, as an example it took several
years for the authors of AlphaGo to properly publish and discuss the importance of Bayesian optimisation
for their task Chen et al., 2018.

The main part of a Bayesian optimisation system is a loop where we in an iterative manner decided on new
locations to evaluate the objective function. The two components of the loop are a surrogate model of the
function which describes how we believe the function looks in every part of the domain and a acquisition
function which decides based on our current belief of what the function is where to sample next. Importantly
this makes it key to have uncertainty in our system as we need to have a belief about what the function
value is everywhere. As we have already looked at Gaussian processes as a rich class of function priors we
will use them for our surrogate model. Lets begin by making the problem more concrete.

Lets assume that we want to find the minima of a function f(x),

x̂ = argminxf(x), (1)

1we will usually refer to it as the minima, when we want to maximise, we just negate the objective function
2read neural networks

1

we will at each time have observed a set of values of the function at specific function locations, we will refer
to this as the data D = {x, f}. Furthermore at any point we have a current best estimate, we will refer to
this location in the data space as x̂ and its function value as f̂ = f(x̂). We will use a surrogate model to
describe our beliefs about the function f . We will use a Gaussian process to do so which means that we have
access to a distribution p(f |x,D) which is the predictive posterior of the Gaussian process.

1 Surrogate Model
We will use a Gaussian process as a surrogate model for the function. Last week we looked at how to work
with Gaussian processes. If you feel that you need a bit of a recap of this go back to that lab and make sure
that you understand Eq. 10-12 and how Figure 2 was generated. What we need to know from our GP is
given a set of data D what is our belief of what the function is at every other location in the input domain.
This is the object that we call the predictive posterior of the Gaussian process,

p(f∗|D,x∗, θ) = N (µx∗|x,Kx∗|x) (2)

µx∗|x = k(x∗,x)k(x,x)
−1f (3)

Kx∗|x = k(x∗,x∗)− k(x∗,x)k(x,x)
−1k(x,x∗). (4)

You will need to implement a function that can return the mean and the variance at a set of locations x_star
of a Gaussian process parametrised using theta.

Code

def surrogate_belief(x,f,x_star,theta):

return mu_star, varSigma_star

Now when we have our surrogate model set up it is time to move on to the second component, the acquisition
function.

2 Aquisition Function
The idea of the aqusition function is that it encodes the strategy of how we should utilise the knowledge that
we currently have in order to decide on where to query the function. The design of this function is where
we balance the two important factors, exploration where we learn about new things, and exploitation where
we utilise what we currently know. There are many different acquisition functions to use and we will here
only look at one of them but in principle they all describe a utility-value across the whole input domain of
how much we will "gain" by querying the function in this specific place.

2.1 Expected Improvement
The most commonly used acquisition function is Expected Improvement Močkus, 1975. The idea underlying
expected improvement is that the utility of a location in the input domain is relative to how much lower we
expect the function value at this point to be compared to the current best estimate. This means that the
utility function u(x) can be defined as follows,

u(x) = max(0, f(x∗)− f(x)) (5)

This means that we have a reward for every location in the space where the function f(x) is smaller than the
current best estimate f(x∗). Now as we do not know f(x) we want to use our knowledge from the surrogate
model f . This we can do by taking the expectation of the utility function over our belief in the function as,

α(x) = E [u(x)|x,D] =
∫ f(x∗)

−∞
(f(x∗)− f(x))N (f |µ(x), k(x, x))df. (6)

Page 2

Note how the upper limit of the integral is the current best estimate of the function thereby implementing
the max operator in Eq. 5.

One of the nice things about Expected improvement is that we can evaluate the expectation in closed form
resulting in the following acquisition function,

α(x) = (f(x∗)− µ(x))Ψ(f(x∗)|µ(x), k(x, x))︸ ︷︷ ︸
exploitation

+ k(x, x)N (f(x∗)|µ(x), k(x, x))︸ ︷︷ ︸
exploration

(7)

Ψ(f(x∗)|µ(x), k(x, x)) =
∫ f(x∗)

−∞
N (f |µ(x), k(x, x))df. (8)

The function Ψ is the cumulative density function or cdf of the Gaussian which has the following form,

Ψ(x | µ, σ) = 1

2

(
1 + erf

(
x− µ

σ
√
2

))
, (9)

where erf(·) is the error-function3. You do not have to implement this yourself as it is available as
scipy.stats.norm.cdf. Now we want to choose points in the input domain that will maximise the ac-
quisition function. Looking at the function that we have derived we can see that it includes two terms, the
first term can be increased by picking an x value such that the difference between f(x∗) − µ(x) is large.
In effect this is exploiting the knowledge that we currently have about the function. The second term can
be increased by finding a location in the input domain such that k(x, x) is large, i.e. the variance at this
location is high. In effect this is exploration as we are looking for locations where we are uncertain of what
the value is. As you can see these two terms formulates a specific balancing between the two key aspects of
search, exploration and exploitation.

Now we need to write an implementation of the acquisition function we are going to need something looking
like this,

Code

from scipy.stats import norm
def expected_improvement(f_max, mu, varSigma, x):

norm.cdf(x, loc, scale) evaluates the cdf of the normal distribution

return alpha

where mu and varSigma is the mean and the variance of the predictive posterior of the surrogate model at
locations x which is the set of candidates for where to pick the next function evaluation from.

We now have all the parts that we need in order to implement our Bayesian optimisation loop, the surrogate
model using a Gaussian process and the acquisition function using expected improvement.

3 Experiments
We will now write up the Bayesian optimisation loop that we will iterate through. The first thing we need
is a function to evaluate. As we want to be able to play around with the function a bit we will add a set of
possible arguments. The functions is the classical Forrester function that was proposed in Forrester, 2008.
Initially we will drop the linear and constant term but you can alter them to test the performance. For the
experiment we will limit the domain to x ∈ [−1, 2].

3https://en.wikipedia.org/wiki/Error_function

Page 3

https://en.wikipedia.org/wiki/Error_function

Code

def f(X, noise=0.0):
return -(-np.sin(3*X) - X**2 + 0.7*X + noise*np.random.randn(*X.shape))

The next thing that we will do is to decide on a finite set of possible evaluations of the function. The function
that we are using is a function in R what we will do is to divide up this space into a finite set of locations
and then our aim is to find at which one of these points we have the minimal value of the function. If we
call this set X we will now start our loop by taking a random set of starting points, compute the predictive
posterior over the remaining points, compute the acquisition for all the points not included in the model,
pick the location with the highest acquisition and include this into the modelling set. A hand-wavy structure
should look something like this.

Algorithm 1 Bayesian Optimisation

1: procedure BO(f(x), α(x),X)
2: xstart ⊂ X ▷ Pick a random set of start-points
3: x← xstart
4: f ′ ← argminx′∈xf(x

′)
5: while iter do ▷ Loop until we have reached max number of iterations
6: Evaluate µX|x and KX|x ▷ Predictive Posterior of Surrogate
7: Evaluate α(X) ▷ Aquisition Function
8: x′ = argmaxx̂∈Xα(x̂) ▷ Pick "best" candidate to evaluation set
9: x = x ∪ x′ ▷ Add element x′ to the set

10: if f(x′) < f ′ then ▷ Update current minima
11: f ′ = f(x′)
12: end if
13: end while
14: return f ′

15: end procedure

One useful way to code this things is to keep two sets of points, you first start with an array with all locations
that you can evaluate the function at, then you pick a random subset from this and move them to another
set. Then for each evaluation you keep removing points from the initial set. This can easily be done with
numpy arrays like this,

Code

remove points from an array
x_2 = np.arange(10)
index = np.random.permutation(10)
x_1 = x_2[index[0:3]]
x_2 = np.delete(x_2, index[0:3])

remove largest element
ind = np.argmax(x_2)
x_1 = np.append(x_1, x_2[ind])
x_2 = np.delete(x_2, ind)

When you got the loop implemented you can try and see how good result you generally get in a fixed number
of iterations. Then you compare this result with taking the same number of locations uniformly at random
from the index set and evaluating them. If you compare the runs how often do you get a better value with
the Bayesian optimisation approach compared to the random search? Now we can alter this question slightly,

Page 4

Figure 1: The image below shows the aqcuisition function in magenta, the true function in black and the
surrogate models belief in blue. The left-most pane is the first iteration, at each iteration we add in the
location of the highest acuisition and update the surrogate model. The image on the far right shows the 8th
iteration. The plot was generated with a zero-mean GP with a squared exponential co-variance function with
lengthscale=0.1, variance=2.0 and a noise=0.1.

given that you have a current best estimate using BO, how many random samples do you need in order to
get an equally good result?

4 Experiments II
Now we have implemented a simple BO example it is time to move to something slightly more interesting.
The idea that we wanted to get across was that beliefs matter when you are reasoning about the unknown
and I hope this has come across. Now if we take a few steps back and think about the beginning of the
module we talked about Laplace Demon and one of its important messages was that you can only ever reason
about data in light of your beliefs. Another way of saying this is that dependent on what you believe you will
interpret data differently. It is amusing to think of conspiracy theories here4 where a believer will interpret
everything to be supporting their theory simply because they have such a strong belief5. Now if we come
back to our simple optimisation example in Figure 1 if you do not know the true function can you ever be
sure that you have found the extremum? No you cannot because the function is explicitly unknown. If this
is the case how do we know when to stop? Again this comes back to your belief about the function. By
choosing the prior we did we explicitly encoded our assumption about the function. In the experiment we ran
we use a exponentiated quadratic covariance where we encoded a belief in the smoothness of the function.
Or in other words how rapidly the function changes. This is the key concept in this lab, your posterior belief
can only ever be interpreted in "light" of your prior belief.

4.1 GPyOpt
In the previous example we implemented the BO loop from scratch, I hope this allowed you to see how
simple the basic mechanics, and how intuitive the sequential decision making loop is. However, there was
one thing we did not do and that was to update our belief of the function with data. What we will now add

4and Laplace does so when discussing Horoscopes in his book
5if you have ever tried to reason with someone who believes in a flat earth you will know what I mean.

Page 5

is an additional loop meaning that we at each iteration try to estimate the hyper-parameters that govern
the function model. Now this might feel like an odd thing to do as we become very sensitive to the data
that we actually gather which might lead to a significant model mismatch between the actual function and
the model we have. Several authors have shown this in practice and there has been recent work that aims at
reformulating the role of the function prior for example Bodin et al., 2020. In the traditional BO loop this
is still what you do, at each iteration you estimate your hyper-parameters from the data that you currently
have access to. This makes the loop quite expensive to run which means we would do well to have a bit
more efficient implementation. We will therefore from now on use a software package called GPyOpt which
is completely open-source and very mature. You can install both packages using pip.

To begin with we will first try a similar experiment to that one we tried before. We will do a simple function
with a couple of parameters that you can alter if you want to test different behaviours of the functions.

Code

import numpy as np

def f(x, beta=0.2, alpha1=1.0, alpha2=1.0):
return np.sin(3.0*x) - alpha1*x + alpha2*x**2 + beta*np.random.randn(x.shape[0])

Rather than defining the GP directly this will be done internally by GPyOpt using the package GPy. What is
left for us is to specify the prior assumption we have over the function, i.e. specify the co-variance function
of the GP.

Code

import GPy
kernel = GPy.kern.RBF(input_dim=1, variance=1.0, lengthscale=4.0)

Now the last thing that remains is to provide GPyOpt with the parameters and structure of the problem.
This is done through a dictionary which we will here call domain. It specifies the variables that should be
optimised, the type of the variable and the domain of the problem.

Code

domain = [{'name': 'var_1', 'type': 'continuous', 'domain': (-3,3)}]

Now the problem is specified, we have defined our prior assumptions about the function and we can let
GPyOpt take care of the loop for us and give us back the result.

Code

from GPyOpt.methods import BayesianOptimization

opt = BayesianOptimization(f=f, domain=domain,model_type='GP',
initial_design_numdata = 1,
kernel=kernel, acquisition_type='EI')

opt.run_optimization(max_iter=6)
opt.plot_acquisition()

Run the code above, play around with more challenging functions so that you get a feeling for how the
software works. The documentation of both GPy and GPyOpt is excellent and should be able to answer most
of your queries around how things work.

Page 6

https://sheffieldml.github.io/GPyOpt/
https://sheffieldml.github.io/GPy/

4.1.1 Prior Knowledge

Now you can only every formulate very generic priors if you do not know what you are modelling so let
us take a more specific example that will allow us to formulate a more informative prior. Let us take the
temperature variations over a year on a planet with 10 days in a year. Now we know quite a bit about this
system and this is something that we should exploit in our prior. First, temperatures can be expected to be
periodic on several different scales, there is a daily cycle and there is also a yearly cycle. Secondly we know
that temperatures are rising so there is a probably a trend that it is likely to get warmer every day. Lets say
that we have a temperature model as follows, where we know the underlying structure but we are uncertain
of the actual impact of each of the of the factors.

f(x) = αsin(
x

10
2π) + βsin(

x

0.5
2 ∗ π) + γx (10)

We will also assume that the noise in the measurements is a zero mean Gaussian with variance 0.1 such that,

yi = f(xi) + ϵ (11)

ϵ ∼ N (0, 0.12) (12)

Figure 2: The image shows the true function in black and the noisy measurements in blue generated with
the following parameters {α, β, γ} = {1.0, 0.5, 0.2}.

Our task is now to find the lowest temperature of the year. First try and run this experiment with the same
co-variance function as we used before, only encoding the range of values we expect using the variance of
co-variance function and the degree of smoothness using the length-scale the resulting plot is shown in Figure
3. As you can see this performs very poorly and you recover very little of the structure of the function and
its quite unlikely6 that you will find the minima which is sometime during day 7. To proceed we can now
introduce the knowledge that we have of the system and use the fact that we know that the function is an
additive composition of four terms. This is really simple to within GPy as we can specify what is referred to
as a compound co-variance by adding co-variance functions together. This can be seen in the code below.

6the procedure is stochastic so you might get lucky

Page 7

Figure 3: The plot above shows the BO loop applied to the temperature data where we have not included
the knowledge that we have about the system.

Page 8

Code

import GPy
from GPyOpt.methods import BayesianOptimization
import numpy as np

def f(x, alpha=1.0, beta=0.5, gamma=0.2):
return alpha*np.sin(2*np.pi*x/10) + ((beta*np.sin((2*np.pi*x/0.5))) +

(gamma*x) +
(0.1*np.random.randn(x.shape[0])))

kernel_rbf = GPy.kern.RBF(input_dim=1, variance=1.0, lengthscale=4.0)
kernel_cmpnd = ((GPy.kern.RBF(input_dim=1, variance=1.0, lengthscale=4.0)) +

(GPy.kern.StdPeriodic(input_dim=1, variance=1.0, period=10.0)) +
(GPy.kern.StdPeriodic(input_dim=1, variance=1.0, period=0.5)) +
(GPy.kern.Linear(input_dim = 1)) +
(GPy.kern.White(input_dim=1, variance=0.1)))

domain = [{'name': 'var_1', 'type': 'continuous', 'domain': (0,10)}]

opt = BayesianOptimization(f=f, domain=domain,model_type='GP',
kernel=kernel_cmpnd,
acquisition_type='EI',
initial_design_numdata=5)

opt.run_optimization(max_iter=10)
opt.plot_acquisition()

In addition to altering the co-variance function we have also made an additional change namely increased the
initial_design_numdata to 5. This parameter specifies how many random points that will be used before
the acquisition function gets evaluated. Using a very small number means that we run the risk of being too
reliant on the initial values. In Figure 4 the result of including the structure is shown. As you can see we
now have a much better knowledge of the underlying signal due to us structuring the hypothesis space in
a manner much more in line with the generating process of the data. Even though we have not found the
correct day after 10 iterations we are much closer and will within a small number of iterations likely reach
this.

5 Summary
Hopefully you have seen that having the concept of uncertainty can be really useful in order to direct
a sequential search strategy as in Bayesian optimisation. Hopefully the simple one dimensional example
provided you with an intuition and I hope that it feels like quite a natural way of how to search for an
optima and that you can relate to the balancing between exploration and explotation in how you would
most likely approach a problem. With the second example we wanted to show the value of including the
knowledge that we have. Importantly the prior that we specify is still a Gaussian process which means that
we have not removed any smooth functions from our distribution, everything is still possible. However, what
we have done is that we have restructured where the prior places mass and included that our belief about
functions with a specific periodic structure is significantly higher compared to other functions. So again,
this is evidence for the important of beliefs and when working with real physical systems we often have a
significant amount of knowledge and this is what we should aim to include.

Page 9

Figure 4: The plot above shows the BO loop applied to the temperature data where we have included the
knowledge that we have about the system. It is clear that including the knowledge of the periodicity of the
system allows for a much better balance between exploration and explotation.

Page 10

References
Bodin, Erik et al. (2020). “Modulating Surrogates for Bayesian Optimization.” In: Proceedings of the 37th

International Conference on Machine Learning, ICML 2019, 12-18 July 2020, Virtual.
Chen, Yutian et al. (2018). “Bayesian Optimization in Alphago.” In: CoRR. arXiv: 1812.06855 [cs.LG].
Forrester, Alexander (2008). Engineering design via surrogate modelling : a practical guide. Chichester, West

Sussex, England Hoboken, NJ: J. Wiley. isbn: 9780470060681.
Močkus, J. (1975). “On bayesian methods for seeking the extremum.” In: Optimization Techniques IFIP

Technical Conference Novosibirsk, July 1–7, 1974. Ed. by G. I. Marchuk. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 400–404. isbn: 978-3-540-37497-8.

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical Bayesian Optimization of Machine
Learning Algorithms.” In: Advances in Neural Information Processing Systems 25. Ed. by F. Pereira, C.
J. C. Burges, L. Bottou, and K. Q. Weinberger. Curran Associates, Inc., pp. 2951–2959.

Page 11

https://arxiv.org/abs/1812.06855

	Surrogate Model
	Aquisition Function
	Expected Improvement

	Experiments
	Experiments II
	GPyOpt
	Prior Knowledge

	Summary

