
Machine Learning in the Physical World
Gaussian Processes

Carl Henrik Ek

October 16, 2024

Abstract
In this work-sheet we will look at Gaussian processes or GPs. These are non-parametric models

that allows us to reason not about parameters of the function that we want to infer but in terms of
more interpretable components as the characteristics of the function. GPs are used exentsively for many
different applications, for reinforcement learning Deisenroth et al., 2015 for modelling complex dynamical
systems Kaiser et al., 2018 and for black-box optimisation Snoek et al., 2012. As an example of the latter
Gaussian processes played a central role in how AlphaGo managed to beat the world GO champion Chen
et al., 2018. In this unit the last use case is going to be one focus for us where we will use GPs as a
surrogate model for an underlying physical system.

Last week we looked at linear regression as an example of how to think about probabilistic models. However,
our hypothesis space was rather limited and we could only work with linear functions. This week we will
look at the same model again, but now use a much richer set of hypothesis, Gaussian processes. The most
natural way to think of Gaussian processes are as distributions over the space of functions. Importantly they
have this wonderful characteristic that they put non-zero probability over every continous function. This
seems like a strange concept at first as we naturally then think about parametrisations of functions. What
would be a sufficiently rich parametrisation that includes all continuous functions? This is where the concept
of non-parametrics comes in, we will not think about functions as parametric objects but as non-parametric
objects where we specifically describe the characteristic of the output of the function. This is the weird and
beautiful world of non-parametrics and getting some clarity about this is the aim of this lab.

1 Model
We are going to work with GPs in exactly the same setting as in the case of linear regression. This means we
are interested in the task of observing a data-set D = {xi, yi}Ni=1 where we assume the following relationship
between the variates,

yi = f(xi). (1)

Our task is to infer the function f(·) from D. We will make the same assumptions as in the linear regression
case which leads us to the following likelihood function,

p(y|f(x)) =
N∏
i=1

p(yi|f(xi)), (2)

where f(xi) is the output of the function at location xi. As you can see the generative model here is slightly
different as we have not made any assumptions on the structure of the function. But lets for a minute
assume that we had access to a distribution that encoded our belief in a general function p(f) we could then
formulate the joint distribution such as,

p(y, f |x) = p(y|f,x)p(f). (3)

We will now proceed to define p(f).

1

https://deepmind.com/research/case-studies/alphago-the-story-so-far

2 Prior
Our task here is to define a prior distribution over the space of functions, this means a distribution p(f)
such that you can evaluate the probability of any function. This is a very strange concept so we are going
to re-write this in a different and non-parametric way. Lets think of what a function actually is, or rather,
how we can observe a function. What we can see is the values of a function, so how about we actually
parametrise the function directly by its output values? To do so let us alter our representation slightly, lets
write down the output of the function as a variable,

fi = f(xi). (4)

Now because we do not know what fi is we are going to treat this as a random variable. In specific we are
going to make the assumption that this variable is Gaussian such as,

fi ∼ N (µ(xi), k(xi)), (5)

where µ(xi) and k(xi) are functions that evaluates the mean and the variance of the random variable as a
function of the input value. Now a function can be evaluate in more than one place, so what we will say is
that not only is each of the function values normally distributed, they are jointly normally distributed. What
this means is that if we now have a set of input locations x = [x1, . . . , xN] they induce the following set of
random variable,

f1
f2
...
fN

 ∼ N




µ(x1)
µ(x2)

...
µ(xN)

 ,


k(x1, x1) k(x1, x2) · · · k(x1, xN)
k(x2, x1) k(x2, x2) · · · k(x2, xN)

...
... · · ·

...
k(xN , x1) k(xN , x2) · · · k(xN , xN)


 , (6)

where k(·, ·) is a function that computes the covariance between of the function values at two locations1 As
it is possible to evaluate the function at infinitely many locations the cardinality of the set is actually the
uncountable infinity. Now we will use one very important result from the Gaussian identities namely the
marginal property of the Gaussian distribution. If we want the marginal distribution of a sub-set of variables
where the whole set is jointly Gaussian we only need to "pick" the corresondping parts of the mean and
the co-variance matrix. What this means is that somewhere there exists an infinite Gaussian distribution,
where each dimension of the distribution corresponds to a random varible but we can project this to any
finite subspace by just evaluating or picking the relevant part of the mean and co-variance. This infinite
dimensional object is called a Gaussian process. This marginal property is incredibly powerful as it implies
that whatever we do in the finite case can be considered a projection from the infinite, therefore we can
think of Eq. 6 as a distribution over the function evaluated at a finite set of locations x which are consistent
with the whole infinite input space.

Using a Gaussian process as a prior over the function implies that we need to specify a mean function µ(·)
and a co-variance function k(·, ·). For now let us use the constant zero function as mean and focus on the co-
variance function. The co-variance function describes how the function outputs varies together as a function
of their inputs. Its not free to be any function as the matrix evaluate on any subset of the input space still
has to be a valid covariance matrix. The class of functions is the same as the class of valid kernel functions,
i.e. it need to define an inner-product space if you are interested in generalisations of Euclidean spaces you
can read more about this here. Without going into too much depth on what consistutes a valid covariance
function the main things that you need to think about is that the matrix needs to be positive-definite, i.e.
all its eigenvalues needs to be positive2. One simple function that is guaranteed to do this is what is called
the exponentiated quadratic, the squared exponential or the radial-basis kernel,

k(x, x′) = σ2e
−(x−x′)T(x−x′)

ℓ2 (7)

where σ2 is referred to as the variance and ℓ as the length-scale of the function.
1through the definition of the variance it therefore needs to compute the variance of the random varialbe if both arguments

are the same.
2you can show this by using the spectral theorem.

Page 2

https://en.wikipedia.org/wiki/Hilbert_space

2.1 Implementation
In order to work with a GP it makes sense to write a bit more sensible structured code and break up a few
things into functions. The first thing we want to implement is a function that allows us to compute the
covariance matrix. It could be nice to try and modularise this so that you can easily use your code with
several different covariance functions.

Code

from scipy.spatial.distance import cdist

def rbf_kernel(x1, x2, varSigma, lengthscale):
if x2 is None:

d = cdist(x1, x1)
else:

d = cdist(x1, x2)

K = varSigma*np.exp(-np.power(d, 2)/lengthscale)

return K

Now when we have written the our covariance function we are ready to sample from our prior. Now let us
try and sample from a GP defined with a zero mean and the exponentiated quadratic defined above. We
will first look at functions with one-dimensional inputs so the infinite process will be indexed by R. The first
thing we will do is to decide which marginal of the real-line that we will look at. We will refer to this as the
index set. Lets now compute this marginal of the process, which being finite is just a Gaussian distribution,
and plot a couple of samples from this.

Code

choose index set for the marginal
x = np.linspace(-6, 6, 200).reshape(-1, 1)
compute covariance matrix
K = rbf_kernel(x, None, 1.0, 2.0)
create mean vector
mu = np.zeros(x.shape)

draw samples 20 from Gaussian distribution
f = np.random.multivariate_normal(mu.flatten(), K, 20)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, f.T)

Run the code above and test a few different parameters for the covariance function, how does the behaviour
of the samples change? The important thing to understand is that even if the process is infinite, as are the
number of values the function can be evaluated across, due to the consistency of a GP we can decide to only
look at a finite subset of the process. This is what we define using x. Test to increase and decrease the
cardinality of the index set.

Sampling from the prior is very important as it allows us to see what assumptions we can encode with the
parameters. Importantly, the GP places non-zero probability on every function so if you sample for long
enough everything will appear, with a few samples you are only seeing the most likely things.

Now lets try to change the covariance function and see how the samples change, lets implement three more

Page 3

covariance functions, a white-noise, a linear and a periodic covariance.

Code

def lin_kernel(x1, x2, varSigma):
if x2 is None:

return varSigma*x1.dot(x1.T)
else:

return varSigma*x1.dot(x2.T)

def white_kernel(x1, x2, varSigma):
if x2 is None:

return varSigma*np.eye(x1.shape[0])
else:

return np.zeros(x1.shape[0], x2.shape[0])

def periodic_kernel(x1, x2, varSigma, period, lenthScale):
if x2 is None:

d = cdist(x1, x1)
else:

d = cdist(x1, x2)

return varSigma*np.exp(-(2*np.sin((np.pi/period)*d)**2)/lengthScale**2)

Generate samples from GPs defined by the different kernels and see what type of behaviour the prior now
encodes. There are several operations you are allowed to do to a kernel while in Bishop, 2006 there is a list
of operations. What you can try is to add different kernels together, you can also multiply them together.
Try this out and look at the samples. The key thing that I want you to see is how much larger the class of
beliefs that you can specify with GPs compared to the lines that we did in the previous lab3.

3 Posterior
Now when we are happy about our prior it is time to move to the posterior distribution. As the GP is
a non-parametric model where we dirctly model the output rather than a specific set of parameters the
posterior takes a form much more similar to the predictive posterior in the linear regression case. Deriving
the posterior is a very simple proceedure making use of the definition of the GP. In specific a GP is defined
as a infinite collection of random variables which are all jointly Gaussian distributed. So lets make use of
this. Lets assume that we have observed data D = {yi, xi}Ni=1 and now we want to predict what the output
of the function is at locations x∗ = {x∗1, . . . , x∗M}. Now the union of the input locations specifies the index
set of the infinite process meaning that we can write up the joint distribution as,

p(f1, . . . , fN , f∗1 . . . , f∗M |x,x∗,θ)

= N





µ(x1)
...

µ(xN)
µ(x∗1)

...
µ(x∗M)


,



k(x1, x1) · · · k(x1, xN) k(x1, x∗1) · · · k(x1, x∗M)
...

. . .
...

... · · ·
...

k(xN , x1) · · · k(xN , xN) k(xN , x∗1) · · · k(xN , x∗M)
k(x∗1, x1) · · · k(x∗1, xN) k(x∗1, x∗1) · · · k(x∗1, x∗M)

...
...

...
...

. . .
...

k(x∗M , x1) · · · k(x∗M , xN) k(x∗M , x∗1) · · · k(x∗M , x∗M)




(8)

3the plots that you have above should be compared with the plots that you did by sampling from the prior in the previous
lab

Page 4

where µ(·) and k(·, ·) are the mean and covariance function and θ are the parameters of the latter. Now this
is just the prior distribution over indexed at the subset of the data and where we are interested in evaluating
the function. We are now interested in reaching the posterior distribution over the index set x∗. Maybe this
feels a bit daunting at first but lets think of what we actually have and what we want to reach. We have a
joint distribution and we want to get the conditional distribution over the index set x∗ given the index set
x. If we apply the product rule and factorise the joint distribution we get,

p(f , f∗|x,x∗,θ) = p(f∗|f ,x,x∗, θ)p(f |x, θ). (9)

Now this is just the factorisation of a Gaussian distribution and its form is something that we proved in the
previous works sheet. So we can just use those results and write down what the conditional distribution that
we are interested in is.

p(f∗|f ,x,x∗, θ) = N (µx∗|x,Kx∗|x) (10)

µx∗|x = k(x∗,x)k(x,x)
−1f (11)

Kx∗|x = k(x∗,x∗)− k(x∗,x)k(x,x)
−1k(x,x∗), (12)

where we have assumed that the mean function µ(·) is the constant zero function.

Reflections

Compare this with linear regression can you see the similarity? Compute each of the terms of the
posterior covariance individually and plot them using plt.imshow do they make sense? One way to
consider the different terms is that the posterior covariance is made up of the prior over the new data
corrected by the information in the data that we have already seen.

Now let us generate some data and sample from this distribution. Lets generate some data from a noisy sine
wave.

Code

N = 5
x = np.linspace(-3.1,3,N)
y = np.sin(2*np.pi/x) + x*0.1 + 0.3*np.random.randn(x.shape[0])
x = np.reshape(x,(-1,1))
y = np.reshape(y,(-1,1))
x_star = np.linspace(-6, 6, 500)

Now we are likely to use compute the posterior quite a few times for different index-sets so its probably
worthwhile to dedicate a function for this. Something like the one below would probably be suitable.

Code

def gp_prediction(x1, y1, xstar, lengthScale, varSigma, noise):

k_starX = rbf_kernel(xstar,x1,lengthScale,varSigma,noise)
k_xx = rbf_kernel(x1, None, lengthScale, varSigma, noise)
k_starstar = rbf_kernel(xstar,None,lengthScale,varSigma,noise)

mu = k_starX.dot(np.linalg.inv(k_xx)).dot(y1)
var = k_starstar - (k_starX).dot(np.linalg.inv(k_xx)).dot(k_starX.T)

return mu, var, xstar

Once we have the the functionality to compute predictive posterior we can now sample from this.

Page 5

Code

Nsamp = 100
mu_star, var_star, x_star = gp_prediction(x1, y1, x, lengthScale, varSigma, noise)
fstar = np.random.multivariate_normal(mu_star, var_star, Nsamp)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x_star, f_star.T)
ax.scatter(x1, y1, 200, 'k', '*', zorder=2)

If things works out as it should you should achieve a plot looking something similar to the one in Figure 1,
As you can all the samples from the function goes through the data.

Figure 1: The above image shows samples from the predictive posterior of a Gaussian process prior specified
by a exponentiated quadratic kernel. As you can see all the samples passes exactly through the data.

Rather than plotting the samples we can also show the mean and the variance around each point in the
index set. This should generate a plot looking something similar to the one shown in Figure 2.

p(y1, . . . , yN , f∗1 . . . , f∗M |x,x∗,θ)

= N





µ(x1)
...

µ(xN)
µ(x∗1)

...
µ(x∗M)


,



k(x1, x1) +
1
β · · · k(x1, xN) k(x1, x∗1) · · · k(x1, x∗M)

...
. . .

...
... · · ·

...
k(xN , x1) · · · k(xN , xN) + 1

β k(xN , x∗1) · · · k(xN , x∗M)

k(x∗1, x1) · · · k(x∗1, xN) k(x∗1, x∗1) · · · k(x∗1, x∗M)
...

...
...

...
. . .

...
k(x∗M , x1) · · · k(x∗M , xN) k(x∗M , x∗1) · · · k(x∗M , x∗M)




(13)

This leads to a tiny change to the predictive posterior in Eq. 12 as we now only need to include the

Page 6

Figure 2: The above image shows the mean prediction and one standard deviation around the mean. You
can generate the plot by using the nice command np.fill_between().

independent noise term as,

p(f∗|y,x,x∗, θ) = N (µx∗|x,Kx∗|x) (14)

µx∗|x = k(x∗,x)

(
k(x,x) +

1

β
I

)−1

y (15)

Kx∗|x = k(x∗,x∗)− k(x∗,x)

(
k(x,x) +

1

β
I

)−1

k(x,x∗). (16)

Think about this and justify to yourself that this makes sense. If you now generate samples from the above
distribution you will see that the samples no longer necessarily goes through the data. We are now allowing
some of the variations in the data to be explained by noise instead of by signal. What you can do now is to
play around with different covariance functions and different parameters etc. and get an intuitive feeling for
what we have done.

4 Summary
Hopefully you have gotten to the end of this worksheet and realised how simple Gaussian processes actually
are. They do really cool stuff and they are called all-sorts of fancy names but really at the core the only thing
it really is is one big Gaussian where the index set have been associated with and interesting interpretation
as an ordered set. If this hasn’t become clear just yet, take a step back and play around with them a bit
more, alter the covariance function, draw some samples write up the derivation. Hopefully after some time
you will feel that this all makes sense. So even though the result looked quite different, what new stuff
have we actually done? Very little. Think about it, we have walked through exactly the same procedure as
in linear regression. The process and the language is all the same, and that is the real benefit of thinking
about machine learning in a Bayesian perspective, its a consistent story. If you look at the equations they
are actually the same due to both methods using Gaussian priors and likelihoods. However, I hope that you
feel how much richer this prior is and that is because we place the prior over completely different things.

Now we have the tools that will allow us to really start looking at the core of this unit, how we can
build machine learning that are connected to real physical systems. In next weeks lab we will use Gaussian

Page 7

processes as a building block in optimisation. In specific we will have underlying explicitly unknown function
that we want to find the extremum of. What we will do is to use a Gaussian process as a surrogate to the
real unknown function. Given the probablistic formulation this will allow us to input our knowledge in the
formulation of the prior distribution.

References
Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (Information Science and Statis-

tics). Secaucus, NJ, USA: Springer-Verlag New York, Inc. isbn: 0387310738.
Chen, Yutian et al. (2018). “Bayesian Optimization in Alphago.” In: CoRR. arXiv: 1812.06855 [cs.LG].
Deisenroth, Marc Peter, Dieter Fox, and Carl Edward Rasmussen (Feb. 2015). “Gaussian Processes for Data-

Efficient Learning in Robotics and Control.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence stat.ML.2, pp. 408–423.

Kaiser, M., C. Otte, T. Runkler, and C. H. Ek (2018). “Bayesian Alignments of Warped Multi-Output Gaus-
sian Processes.” In: Advances in Neural Information Processing Systems 32, [NIPS Conference, Montreal,
Quebec, Canada, December 3 - December 8, 2018].

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical Bayesian Optimization of Machine
Learning Algorithms.” In: Advances in Neural Information Processing Systems 25. Ed. by F. Pereira, C.
J. C. Burges, L. Bottou, and K. Q. Weinberger. Curran Associates, Inc., pp. 2951–2959.

Page 8

https://arxiv.org/abs/1812.06855

	Model
	Prior
	Implementation

	Posterior
	Summary

