Linear Algebra and Regression

Neil Lawrence

Dedan Kimathi University, Nyeri, Kenya

Review

  • Last time: Reviewed Objective Functions and gradient descent.

Regression Examples

  • Predict a real value, \(y_i\) given some inputs \(\mathbf{ x}_i\).
  • Predict quality of meat given spectral measurements (Tecator data).
  • Radiocarbon dating, the C14 calibration curve: predict age given quantity of C14 isotope.
  • Predict quality of different Go or Backgammon moves given expert rated training data.

Latent Variables

\(y= mx+ c + \epsilon\)

point 1: \(x= 1\), \(y=3\) \[ 3 = m + c + \epsilon_1 \]

point 2: \(x= 3\), \(y=1\) \[ 1 = 3m + c + \epsilon_2 \]

point 3: \(x= 2\), \(y=2.5\) \[ 2.5 = 2m + c + \epsilon_3 \]

A Probabilistic Process

Set the mean of Gaussian to be a function. \[ p\left(y_i|x_i\right)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{\left(y_i-f\left(x_i\right)\right)^{2}}{2\sigma^2}\right). \]

This gives us a ‘noisy function.’

This is known as a stochastic process.

Olympic 100m Data

  • Gold medal times for Olympic 100 m runners since 1896.
  • One of a number of Olypmic data sets collected by Rogers and Girolami (2011).
Start of the 2012 London 100m race. Image by Darren Wilkinson from Wikimedia Commons

Olympic 100m Data

Sum of Squares Error

\[ E(\mathbf{ w}) = \sum_{i=1}^n \left(y_i - \mathbf{ x}_i^\top \mathbf{ w}\right)^2 \]

  • Will recast with probabilistic motivation.
  • First, reminder of Gaussian distribution.

The Gaussian Density

  • Perhaps the most common probability density.

\[\begin{align} p(y| \mu, \sigma^2) & = \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(y- \mu)^2}{2\sigma^2}\right)\\& \buildrel\triangle\over = \mathscr{N}\left(y|\mu,\sigma^2\right) \end{align}\]

Gaussian Density

Gaussian Density

\[ \mathscr{N}\left(y|\mu,\sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) \]

\(\sigma^2\) is the variance of the density and \(\mu\) is the mean.

Two Important Gaussian Properties

Sum of Gaussians

Sum of Gaussian variables is also Gaussian.

\[y_i \sim \mathscr{N}\left(\mu_i,\sigma_i^2\right)\]

And the sum is distributed as

\[ \sum_{i=1}^{n} y_i \sim \mathscr{N}\left(\sum_{i=1}^n\mu_i,\sum_{i=1}^n\sigma_i^2\right) \]

(Aside: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian because of central limit theorem.)

Scaling a Gaussian

Scaling a Gaussian leads to a Gaussian.

\[y\sim \mathscr{N}\left(\mu,\sigma^2\right)\]

And the scaled variable is distributed as

\[wy\sim \mathscr{N}\left(w\mu,w^2 \sigma^2\right).\]

Laplace’s Idea

A Probabilistic Process

Set the mean of Gaussian to be a function.

\[p\left(y_i|x_i\right)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{\left(y_i-f\left(x_i\right)\right)^{2}}{2\sigma^2}\right).\]

This gives us a ‘noisy function.’

This is known as a stochastic process.

Height as a Function of Weight

In the standard Gaussian, parameterized by mean and variance, make the mean a linear function of an input.

This leads to a regression model. \[ \begin{align*} y_i=&f\left(x_i\right)+\epsilon_i,\\ \epsilon_i \sim & \mathscr{N}\left(0,\sigma^2\right). \end{align*} \]

Assume \(y_i\) is height and \(x_i\) is weight.

Data Point Likelihood

Likelihood of an individual data point \[ p\left(y_i|x_i,m,c\right)=\frac{1}{\sqrt{2\pi \sigma^2}}\exp\left(-\frac{\left(y_i-mx_i-c\right)^{2}}{2\sigma^2}\right). \] Parameters are gradient, \(m\), offset, \(c\) of the function and noise variance \(\sigma^2\).

Data Set Likelihood

If the noise, \(\epsilon_i\) is sampled independently for each data point. Each data point is independent (given \(m\) and \(c\)). For independent variables: \[ p(\mathbf{ y}) = \prod_{i=1}^np(y_i) \] \[ p(\mathbf{ y}|\mathbf{ x}, m, c) = \prod_{i=1}^np(y_i|x_i, m, c) \]

For Gaussian

i.i.d. assumption \[ p(\mathbf{ y}|\mathbf{ x}, m, c) = \prod_{i=1}^n\frac{1}{\sqrt{2\pi \sigma^2}}\exp \left(-\frac{\left(y_i- mx_i-c\right)^{2}}{2\sigma^2}\right). \]

\[ p(\mathbf{ y}|\mathbf{ x}, m, c) = \frac{1}{\left(2\pi \sigma^2\right)^{\frac{n}{2}}}\exp\left(-\frac{\sum_{i=1}^n\left(y_i-mx_i-c\right)^{2}}{2\sigma^2}\right). \]

Log Likelihood Function

  • Normally work with the log likelihood: \[\begin{aligned} L(m,c,\sigma^{2})= & -\frac{n}{2}\log 2\pi -\frac{n}{2}\log \sigma^2 \\& -\sum_{i=1}^{n}\frac{\left(y_i-mx_i-c\right)^{2}}{2\sigma^2}. \end{aligned}\]

Consistency of Maximum Likelihood

  • If data was really generated according to probability we specified.
  • Correct parameters will be recovered in limit as \(n\rightarrow \infty\).

Consistency of Maximum Likelihood

  • This can be proven through sample based approximations (law of large numbers) of “KL divergences.”
  • Mainstay of classical statistics (Wasserman, 2003).

Probabilistic Interpretation of Error Function

  • Probabilistic Interpretation for Error Function is Negative Log Likelihood.
  • Minimizing error function is equivalent to maximizing log likelihood.

Probabilistic Interpretation of Error Function

  • Maximizing log likelihood is equivalent to maximizing the likelihood because \(\log\) is monotonic.
  • Probabilistic interpretation: Minimizing error function is equivalent to maximum likelihood with respect to parameters.

Error Function

  • Negative log likelihood leads to an error function \[\begin{aligned} E(m,c,\sigma^{2})= & \frac{n}{2}\log \sigma^2 \\& +\frac{1}{2\sigma^2}\sum _{i=1}^{n}\left(y_i-mx_i-c\right)^{2}.\end{aligned}\]
  • Learning by minimising error function.

Sum of Squares Error

  • Ignoring terms which don’t depend on \(m\) and \(c\) gives \[E(m, c) \propto \sum_{i=1}^n(y_i - f(x_i))^2\] where \(f(x_i) = mx_i + c\).

Sum of Squares Error

  • This is recognised as the sum of squares error function.
  • Commonly used and is closely associated with the Gaussian likelihood.

Reminder

  • Two functions involved:
    • Prediction function: \(f(x_i)\)
    • Error, or Objective function: \(E(m, c)\)
  • Error function depends on parameters through prediction function.

Mathematical Interpretation

  • What is the mathematical interpretation?
  • There is a cost function.
    • It expresses mismatch between your prediction and reality. \[ E(m, c)=\sum_{i=1}^n\left(y_i - mx_i-c\right)^2 \]
    • This is known as the sum of squares error.

Legendre

  • Sum of squares error was first published by Legendre in 1805
  • But Laplace had priority - he used it to recover the lost planet Ceres
  • This led to a priority dispute between Legendre and Gauss

Legendre

Olympic Marathon Data

  • Gold medal times for Olympic Marathon since 1896.
  • Marathons before 1924 didn’t have a standardized distance.
  • Present results using pace per km.
  • In 1904 Marathon was badly organized leading to very slow times.
Image from Wikimedia Commons

Olympic Marathon Data

Alan Turing

Probability Winning Olympics?

  • He was a formidable Marathon runner.
  • In 1946 he ran a time 2 hours 46 minutes.
    • That’s a pace of 3.95 min/km.
  • What is the probability he would have won an Olympics if one had been held in 1946?

Running Example: Olympic Marathons

Maximum Likelihood: Iterative Solution

\[ E(m, c) = \sum_{i=1}^n(y_i-mx_i-c)^2 \]

Coordinate Descent

Learning is Optimisation

  • Learning is minimisation of the cost function.
  • At the minima the gradient is zero.
  • Coordinate descent, find gradient in each coordinate and set to zero. \[\frac{\text{d}E(c)}{\text{d}c} = -2\sum_{i=1}^n\left(y_i- m x_i - c \right)\] \[0 = -2\sum_{i=1}^n\left(y_i- mx_i - c \right)\]

Learning is Optimisation

  • Fixed point equations \[0 = -2\sum_{i=1}^ny_i +2\sum_{i=1}^nm x_i +2n c\] \[c = \frac{\sum_{i=1}^n\left(y_i - mx_i\right)}{n}\]

Learning is Optimisation

  • Learning is minimisation of the cost function.
  • At the minima the gradient is zero.
  • Coordinate descent, find gradient in each coordinate and set to zero. \[\frac{\text{d}E(m)}{\text{d}m} = -2\sum_{i=1}^nx_i\left(y_i- m x_i - c \right)\] \[0 = -2\sum_{i=1}^nx_i \left(y_i-m x_i - c \right)\]

Learning is Optimisation

  • Fixed point equations \[0 = -2\sum_{i=1}^nx_iy_i+2\sum_{i=1}^nm x_i^2+2\sum_{i=1}^ncx_i\] \[m = \frac{\sum_{i=1}^n\left(y_i -c\right)x_i}{\sum_{i=1}^nx_i^2}\]

\[m^* = \frac{\sum_{i=1}^n(y_i - c)x_i}{\sum_{i=1}^nx_i^2}\]

Fixed Point Updates

Worked example.

\[ \begin{aligned} c^{*}=&\frac{\sum _{i=1}^{n}\left(y_i-m^{*}x_i\right)}{n},\\ m^{*}=&\frac{\sum _{i=1}^{n}x_i\left(y_i-c^{*}\right)}{\sum _{i=1}^{n}x_i^{2}},\\ \left.\sigma^2\right.^{*}=&\frac{\sum _{i=1}^{n}\left(y_i-m^{*}x_i-c^{*}\right)^{2}}{n} \end{aligned} \]

Coordiate Descent Algorithm

Contour Plot of Error Function

Regression Coordiate Fit

Important Concepts Not Covered

  • Other optimization methods:
    • Second order methods, conjugate gradient, quasi-Newton and Newton.
  • Effective heuristics such as momentum.
  • Local vs global solutions.

Multivariate Regression

Multi-dimensional Inputs

  • Multivariate functions involve more than one input.
  • Height might be a function of weight and gender.
  • There could be other contributory factors.
  • Place these factors in a feature vector \(\mathbf{ x}_i\).
  • Linear function is now defined as \[f(\mathbf{ x}_i) = \sum_{j=1}^p w_j x_{i, j} + c\]

Vector Notation

  • Write in vector notation, \[f(\mathbf{ x}_i) = \mathbf{ w}^\top \mathbf{ x}_i + c\]
  • Can absorb \(c\) into \(\mathbf{ w}\) by assuming extra input \(x_0\) which is always 1. \[f(\mathbf{ x}_i) = \mathbf{ w}^\top \mathbf{ x}_i\]

Log Likelihood for Multivariate Regression

The likelihood of a single data point is

\[p\left(y_i|x_i\right)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{\left(y_i-\mathbf{ w}^{\top}\mathbf{ x}_i\right)^{2}}{2\sigma^2}\right).\]

Log Likelihood for Multivariate Regression

Leading to a log likelihood for the data set of

\[\begin{aligned}L(\mathbf{ w},\sigma^2)= & -\frac{n}{2}\log \sigma^2-\frac{n}{2}\log 2\pi \\ & -\frac{\sum_{i=1}^{n}\left(y_i-\mathbf{ w}^{\top}\mathbf{ x}_i\right)^{2}}{2\sigma^2}.\end{aligned}\]

Error Function

And a corresponding error function of \[E(\mathbf{ w},\sigma^2)=\frac{n}{2}\log\sigma^2 + \frac{\sum_{i=1}^{n}\left(y_i-\mathbf{ w}^{\top}\mathbf{ x}_i\right)^{2}}{2\sigma^2}.\]

Quadratic Loss

\[ E(\mathbf{ w}) = \sum_{i=1}^n\left(y_i - f(\mathbf{ x}_i, \mathbf{ w})\right)^2 \]

Linear Model

\[ E(\mathbf{ w}) = \sum_{i=1}^n\left(y_i - \mathbf{ w}^\top \mathbf{ x}_i\right)^2 \]

Bracket Expansion

\[ \begin{align*} E(\mathbf{ w},\sigma^2) = & \frac{n}{2}\log \sigma^2 + \frac{1}{2\sigma^2}\sum _{i=1}^{n}y_i^{2}-\frac{1}{\sigma^2}\sum _{i=1}^{n}y_i\mathbf{ w}^{\top}\mathbf{ x}_i\\&+\frac{1}{2\sigma^2}\sum _{i=1}^{n}\mathbf{ w}^{\top}\mathbf{ x}_i\mathbf{ x}_i^{\top}\mathbf{ w} +\text{const}.\\ = & \frac{n}{2}\log \sigma^2 + \frac{1}{2\sigma^2}\sum _{i=1}^{n}y_i^{2}-\frac{1}{\sigma^2} \mathbf{ w}^\top\sum_{i=1}^{n}\mathbf{ x}_iy_i\\&+\frac{1}{2\sigma^2} \mathbf{ w}^{\top}\left[\sum _{i=1}^{n}\mathbf{ x}_i\mathbf{ x}_i^{\top}\right]\mathbf{ w}+\text{const}. \end{align*} \]

Design Matrix

\[ \mathbf{X} = \begin{bmatrix} \mathbf{ x}_1^\top \\\ \mathbf{ x}_2^\top \\\ \vdots \\\ \mathbf{ x}_n^\top \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\\ 1 & x_2 \\\ \vdots & \vdots \\\ 1 & x_n \end{bmatrix} \]

Writing the Objective with Linear Algebra

\[ E(\mathbf{ w}) = \sum_{i=1}^n(y_i - f(\mathbf{ x}_i; \mathbf{ w}))^2, \]

\[ f(\mathbf{ x}_i; \mathbf{ w}) = \mathbf{ x}_i^\top \mathbf{ w}. \]

Stacking Vectors

\[ \mathbf{ f}= \begin{bmatrix}f_1\\f_2\\ \vdots \\ f_n\end{bmatrix}. \]

\[ E(\mathbf{ w}) = (\mathbf{ y}- \mathbf{ f})^\top(\mathbf{ y}- \mathbf{ f}) \]

\[ \mathbf{ f}= \mathbf{X}\mathbf{ w}. \]

\[ E(\mathbf{ w}) = (\mathbf{ y}- \mathbf{ f})^\top(\mathbf{ y}- \mathbf{ f}) \]

Objective Optimization

Multivariate Derivatives

  • We will need some multivariate calculus.
  • For now some simple multivariate differentiation: \[\frac{\text{d}{\mathbf{a}^{\top}}{\mathbf{ w}}}{\text{d}\mathbf{ w}}=\mathbf{a}\] and \[\frac{\mathbf{ w}^{\top}\mathbf{A}\mathbf{ w}}{\text{d}\mathbf{ w}}=\left(\mathbf{A}+\mathbf{A}^{\top}\right)\mathbf{ w}\] or if \(\mathbf{A}\) is symmetric (i.e. \(\mathbf{A}=\mathbf{A}^{\top}\)) \[\frac{\text{d}\mathbf{ w}^{\top}\mathbf{A}\mathbf{ w}}{\text{d}\mathbf{ w}}=2\mathbf{A}\mathbf{ w}.\]

Differentiate the Objective

Differentiating with respect to the vector \(\mathbf{ w}\) we obtain

\[ \frac{\partial L\left(\mathbf{ w},\sigma^2 \right)}{\partial \mathbf{ w}}=\frac{1}{\sigma^2} \sum _{i=1}^{n}\mathbf{ x}_i y_i-\frac{1}{\sigma^2} \left[\sum _{i=1}^{n}\mathbf{ x}_i\mathbf{ x}_i^{\top}\right]\mathbf{ w} \] Leading to \[ \mathbf{ w}^{*}=\left[\sum _{i=1}^{n}\mathbf{ x}_i\mathbf{ x}_i^{\top}\right]^{-1}\sum _{i=1}^{n}\mathbf{ x}_iy_i, \]

Differentiate the Objective

Rewrite in matrix notation: \[ \sum_{i=1}^{n}\mathbf{ x}_i\mathbf{ x}_i^\top = \mathbf{X}^\top \mathbf{X} \] \[ \sum_{i=1}^{n}\mathbf{ x}_iy_i = \mathbf{X}^\top \mathbf{ y} \]

Update Equation for Global Optimum

Update Equations

  • Solve the matrix equation for \(\mathbf{ w}\). \[\mathbf{X}^\top \mathbf{X}\mathbf{ w}= \mathbf{X}^\top \mathbf{ y}\]

  • The equation for \(\left.\sigma^2\right.^{*}\) may also be found \[\left.\sigma^2\right.^{{*}}=\frac{\sum_{i=1}^{n}\left(y_i-\left.\mathbf{ w}^{*}\right.^{\top}\mathbf{ x}_i\right)^{2}}{n}.\]

Movie Violence Data

  • Data containing movie information (year, length, rating, genre, IMDB Rating).
  • Try and predict what factors influence a movie’s violence

Multivariate Regression on Movie Violence Data

  • Regress from features Year, Body_Count, Length_Minutes to IMDB_Rating.

Residuals

Solution with QR Decomposition

\[ \mathbf{X}^\top \mathbf{X}\boldsymbol{\beta} = \mathbf{X}^\top \mathbf{ y} \] substitute \(\mathbf{X}= \mathbf{Q}\mathbf{R}\) \[ (\mathbf{Q}\mathbf{R})^\top (\mathbf{Q}\mathbf{R})\boldsymbol{\beta} = (\mathbf{Q}\mathbf{R})^\top \mathbf{ y} \] \[ \mathbf{R}^\top (\mathbf{Q}^\top \mathbf{Q}) \mathbf{R} \boldsymbol{\beta} = \mathbf{R}^\top \mathbf{Q}^\top \mathbf{ y} \]

\[ \mathbf{R}^\top \mathbf{R} \boldsymbol{\beta} = \mathbf{R}^\top \mathbf{Q}^\top \mathbf{ y} \] \[ \mathbf{R} \boldsymbol{\beta} = \mathbf{Q}^\top \mathbf{ y} \]

  • More nummerically stable.
  • Avoids the intermediate computation of \(\mathbf{X}^\top\mathbf{X}\).

Thanks!

Further Reading

  • For fitting linear models: Section 1.1-1.2 of Rogers and Girolami (2011)

  • Section 1.2.5 up to equation 1.65 of Bishop (2006)

  • Section 1.3 for Matrix & Vector Review of Rogers and Girolami (2011)

References

Bishop, C.M., 2006. Pattern recognition and machine learning. springer.
Rogers, S., Girolami, M., 2011. A first course in machine learning. CRC Press.
Wasserman, L.A., 2003. All of statistics. springer, New York.