Now we are going to consider how these basis functions can be
adjusted to fit to a particular data set. We will return to the olympic
marathon data from last time. First we will scale the output of the data
to be zero mean and variance 1.
Olympic Marathon Data
Gold medal times for Olympic Marathon since 1896.
Marathons before 1924 didn’t have a standardized distance.
Present results using pace per km.
In 1904 Marathon was badly organized leading to very slow
times.
The likelihood of a single data point is \[
p\left(y_i|x_i\right)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{\left(y_i-\mathbf{
w}^{\top}\boldsymbol{ \phi}_i\right)^{2}}{2\sigma^2}\right).
\]
Log Likelihood for Basis Function Model
Leading to a log likelihood for the data set of \[
L(\mathbf{ w},\sigma^2)= -\frac{n}{2}\log \sigma^2-\frac{n}{2}\log 2\pi
-\frac{\sum_{i=1}^{n}\left(y_i-\mathbf{ w}^{\top}\boldsymbol{
\phi}_i\right)^{2}}{2\sigma^2}.
\]
Objective Function
And a corresponding objective function of the form \[
E(\mathbf{ w},\sigma^2)= \frac{n}{2}\log\sigma^2 +
\frac{\sum_{i=1}^{n}\left(y_i-\mathbf{ w}^{\top}\boldsymbol{
\phi}_i\right)^{2}}{2\sigma^2}.
\]
We will need some multivariate calculus. \[\frac{\text{d}\mathbf{a}^{\top}\mathbf{
w}}{\text{d}\mathbf{ w}}=\mathbf{a}\] and \[\frac{\text{d}\mathbf{
w}^{\top}\mathbf{A}\mathbf{ w}}{\text{d}\mathbf{
w}}=\left(\mathbf{A}+\mathbf{A}^{\top}\right)\mathbf{ w}\] or if
\(\mathbf{A}\) is symmetric
(i.e.\(\mathbf{A}=\mathbf{A}^{\top}\)) \[\frac{\text{d}\mathbf{
w}^{\top}\mathbf{A}\mathbf{ w}}{\text{d}\mathbf{ w}}=2\mathbf{A}\mathbf{
w}.\]
The equation for \(\left.\sigma^2\right.^{*}\) may also be
found \[
\left.\sigma^2\right.^{{*}}=\frac{\sum_{i=1}^{n}\left(y_i-\left.\mathbf{
w}^{*}\right.^{\top}\boldsymbol{ \phi}_i\right)^{2}}{n}.
\]
Avoid Direct Inverse
E.g. Solve for \(\mathbf{ w}\)\[
\left(\boldsymbol{ \Phi}^\top \boldsymbol{ \Phi}\right)\mathbf{ w}=
\boldsymbol{ \Phi}^\top \mathbf{ y}
\]
\[
\mathbf{A}\mathbf{x} = \mathbf{b}.
\]
See np.linalg.solve
In practice use \(\mathbf{Q}\mathbf{R}\) decomposition (see
lab class notes).