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Unification: Scientific Reductionism

Isaac Newton: Universal Gravitation and motion

Principia Mathematica Philosophiæ Naturalis (1687)

James Clerk Maxwell: Electricity + Magnetism

Treatise on Electricity and Magnetism (1873)

Albert Einstein: Gravity and Motion + Structure of 4-dimensional space-time

Zur Elektrodynamik bewegter Körper (1905)

Die Formale Grundlage der Allgemeinen Relativitätstheorie (1914)

Planck, Bohr, Heisenberg, CN Yang, Feynmann, . . . (1901 - )

All elementary particles ; Quantum Field Theory, only 3 forces:

Strong, weak nuclear, eletro-magnetic

400 years of mathematical physics: Gotten down to TWO! ...
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Two Pillars of Modern Physics

1 MACROSCOPIC (General Relativity) GR

motions of galaxies and stars

Gravitational Waves: 2018, new era for cosmology p ∼ 99.99994%

2 MICROSCOPIC (Quantum Field Theory) QFT

elementary particles = SU(3)S × [SU(2)× U(1)]EW gauge theory

experimentally verified to 19 digits!

Higgs Boson: 2014 at LHC, CERN, last piece to SM!

Biggest Question in Fundamental Science: 1 + 2 does not work

Unrenormalizability of gravity; Einstein’s & Hawking’s dream of

Theory of Everything ToE
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The Geometrization Programme

Algebraic/differential geometry/topology : the right language for physics

(realized by C20th)

Space-Time = GR = Differential Geometry (Riemann-Einstein)

Interactions = particles = QFT = Algebraic Geometry + Group Theory

(Weyl, Weil, CN Yang-SS Chern, Wigner, Atiyah, ’t Hooft . . . )

see CN.Yang-ML.Ge-YHH, Topology & Physics, WS 2019

String theory: brain-child of gauge-gravity geometrization tradition (Witten,

Maldacena, . . . )

since 1970s; manages to give a ToE. . . . with a caveat

THIS TALK: C21st A new exciting era: for synergy with (pure &

computational) geometry, group theory, combinatorics, number theory,

algorithms, data science.
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Paradigm Shift: Points ; Strings

Standard Model

Universe gives a hint: Planck Length

LPlanck =
√

~GNewton
c3 ∼ 10−35m

Fund constituents 1-dim, NOT points

(0-dim)? ; strings, size LPlanck

PREMISE: All particles, all of space-time, all

of reality are vibration modes of an OPEN

or CLOSED string

WORKS only in 10 dimensions

General

Relativity
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Superstring Theory 9+1 d

Our world 3+1d   SU(3)xSU(2)xU(1) SM + GR

1.  Reduce Dim: 10 = 6+4

2.  Break SUSY

Unified theory of quantum gravity

I. 6 Large Dim

AdS/CFT

Brane World

II. 6 small dim

Compactification
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10 = 4 + 3× 2

String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1985

Standard Solution, e.g., R3,1 ×X, X is not just 6-manifold, but a Complex

3-fold, Ricci-flat (vacuum Einstein), Kähler (SUSY, gµν̄ = ∂µ∂̄ν̄K)

mathematicians independently thinking of same problem:

Euler, Gauss, Riemann Σ: dimR = 2, i.e., dimC = 1 (in fact Kähler)

Trichtomy classification of (compact orientable) surfaces [Riemann

surfaces/complex algebraic curves] Σ Euler number χ(Σ), genus g(Σ)

. . .

g(Σ) = 0 g(Σ) = 1 g(Σ) > 1
χ(Σ) = 2 χ(Σ) = 0 χ(Σ) < 0
Spherical Ricci-Flat Hyperbolic

+ curvature 0 curvature − curvature
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Calabi-Yau

Want to generalize:

χ(Σ) = 2− 2g(Σ) = = [c1(Σ)] · [Σ] = = 1
2π

∫
Σ
R = =

2∑
i=0

(−1)ihi(Σ)

Topology Algebraic Geom. Differential Geom. Index/(co-)cohomology
Invariants Characteristic class Curvature Betti Numbers

HIGH DIMENSION: HARD, Luckily, for our class of Kähler manifolds:

CONJECTURE [Eugenio Calabi , 1954, 1957]: M compact Kähler (g, ω),

([R] = [c1(M)])H1,1(M) ⇒ ∃!(g̃, ω̃) s.t. ([ω] = [ω̃])H2(M ;R), Ricci(ω̃) = R.

Rmk: c1(M) = 0⇔ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)

THEOREM [S-T Yau , 1977-8; Fields 1982] Existence Proof

Calabi-Yau: Kähler and Ricci-flat (Strominger & Yau were neighbours at IAS)
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The Inevitability of Algebraic Geometry

Construct CY3?: CY Examples

realize as zero sets of polynomials, Algebraic Geometry e.g.,

{(p, q)|p2 + q2 − 1 = 0} ⊂ R2 is a circle (1-real dimension)

Complexify and Projectivize (Projective algebraic variety)

Cubic equation in CP2: e.g. CY1 = T 2 {(x, y, z)|x3 + y3 + z3 = 0} ⊂ CP2

(elliptic curve); dimC = 2− 1 = 1

TMH: Homogeneous Eq in CPn, degree = n+ 1 is Calabi-Yau of dimC = n−1

An Early Physical Challenge to Algebraic Geometry

Particle content in [CHSW]

Generation h1(X,TX) = h2,1

∂
(X)

Anti-Generation h1(X,TX∗) = h1,1

∂
(X)

 Net-gen: χ = 2(h1,1 − h2,1)

= Euler Number (X)

1986 Question: Are there Calabi-Yau threefolds with χ = ±6?
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The First Data-sets in Mathematical Physics/Geometry

[Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)

CICYs (complete intersection CYs) multi-deg polys in products of CPni CICYs

Problem: classify all configuration matrices; employed the best computers at

the time (CERN supercomputer); q.v. magnetic tape and dot-matrix printout in Philip’s office

7890 matrices, 266 Hodge pairs (h1,1, h2,1), 70 Euler χ ∈ [−200, 0]

[Candelas-Lynker-Schimmrigk, 1990]

Hypersurfaces in Weighted P4

7555 inequivalent 5-vectors wi, 2780 Hodge pairs, χ ∈ [−960, 960]

[Kreuzer-Skarke, mid-1990s - 2000] Reflexive Polytopes

Batyrev-Borisov: Hypersurfaces in (Reflexive, Gorenstein Fano) Toric 4-folds

6-month running time on dual Pentium SGI machine

at least 473,800,776, with 30,108 distinct Hodge pairs, χ ∈ [−960, 960]
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The age of data science in math-

ematical physics/string theory

not as recent as you might think

of course, experimental physics

had been decades ahead in

data-science/machine-learning

After 40 years of research by

mathematicians and physicists

. . . ...
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The Compact CY3 Landscape

cf. YHH, The Calabi-Yau Landscape: from Geometry, to Physics, to

Machine-Learning, 1812.02893, [Springer, to appear]
Vienna (KS, Knapp,. . . ), Penn (Ovrut,
Cvetic, Donagi, Pantev . . . ), Ox-
ford/London (Candelas, Constantin,
Lukas, Mishra, YHH, . . . ), MIT (Taylor,
Johnson, Wang, . . . ), Northeastern/Wits
(Halverson, Long, Nelson, Jejjala, YHH),
Virginia Tech (Anderson, Gray, SJ Lee,
. . . ), Utrecht (Grimm . . . ), CERN
(Weigand, . . . ), Cornell (MacAllister,
Stillman), Munich (Luest, Vaudravange),
Uppsala (Larfors, Seong) . . .

 S

Calabi−Yau Threefolds

KS
Toric Hypersurface

Elliptic Fibration

CICY
 Q
.

.

Georgia O’Keefe on Kreuzer-Skarke

Horizontal χ = 2(h1,1−h2,1) vs. Vertical h1,1+h2,1
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The Geometric Origin of our Universe

Each CY3 (+ bundles, discrete symmetries) X gives a 4-D universe

The geometry (algebraic geometry, topology, differential geometry etc.) of X

determines the physical properties of the 4-D world

particles and interactions ∼ cohomology theory; masses ∼ metric; Yukawa ∼

Triple intersections/integral of forms over X

Ubi materia, ibi geometria

– Johannes Kepler (1571-1630)

Our Universe:


(1) probabilistic/anthropic?

(2) Sui generis/selection rule? Triadophilia

(3) one of multi-verse ?
cf. Exo-planet/Habitable Zone search
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The Landscape Explosion & Vacuum Degeneracy Problem

meanwhile . . . LANDSCAPE grew rapidly with
D-branes Polchinski 1995

M-Theory/G2 Witten, 1995

F-Theory/4-folds Katz-Morrison-Vafa, 1996

AdS/CFT Maldacena 1998

Flux-comp. Kachru-Kallosh-Linde-Trivedi, 2003, Denef-Douglas 2005-6: 10�500 possibilities . . .

String theory trades one hard-problem [quantization of gravity] by another

[looking for the right compactification] (in many ways a richer and more

interesting problem, especially for the string/maths community)

Is String Theory ToE? (don’t know), Is String Theory THE ONE branch of

fundamental science constantly generating new dialogues between physics,

maths, CS, data-science etc. ? (YES!)
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Where we stand . . .

The Good Last 10-15 years: large collaborations of physicists, computational

mathematicians (cf. SageMATH, GAP, Bertini, MAGMA,

Macaulay2, Singular) have bitten the bullet computed many

geometrical/physical quantities and compiled them into various

databases Landscape Data (109∼10 entries typically)

The Bad Generic computation HARD: dual cone algorithm (exponential),

triangulation (exponential), Gröbner basis (double-exponential)

. . . e.g., how to construct stable bundles over the � 473 million KS

CY3? Sifting through for SM computationally impossible . . .

The ??? Borrow new techniques from “Big Data” revolution
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A Wild Question

Typical Problem in String Theory/Algebraic Geometry:

INPUT

integer tensor −→
OUTPUT

integer

Q: Can (classes of problems in computational) Algebraic Geometry be

“learned” by AI ? , i.e., can we

machine-learn the string landscape?

ML algebraic geometry?

[YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017

( Science, Aug, vol 365 issue 6452 ): Experimentally, it seems so for many

situations in geometry and beyond.
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A Prototypical Question

Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

How to set up a bijection that takes these to {1, 2, . . . , 9, 0}? Find a clever

Morse function? Compute persistent homology? Find topological invariants?

ALL are inefficient and too sensitive to variation.

What does your iPhone/tablet do? What does Google do? Machine-Learn

Take large sample, take a few hundred thousand (e.g. NIST database)

. . . 28× 28× (RGB)
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NN Doesn’t Care/Know about Alg. Geo. (YHH 1706.02714)

Hodge Number of a Complete Intersection CY is the association rule, e.g.

X =



1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 2 0

0 1 1 0 0 0 0 1

1 0 0 0 0 1 1 0

0 0 0 1 1 0 0 1

 , h1,1(X) = 8 ; −→ 8

CICY is 12× 15 integer matrix with entries ∈ [0, 5] is simply represented as a

12× 15 pixel image of 6 colours Proper Way ; ML in matter of seconds/minutes

Cross-Validation:


- Take samples of X → h1,1

- train a NN, or SVM

- Validation on unseen X → h1,1
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Deep-Learning String Geometry: Early Experiments

2017 String Landscape YHH (1706.02714); Calabi-Yau Volume

Seong-Krefl (1706.03346); Line-Bundles Ruehle (1706.07024);

Vacuum Selection Carifio-Halverson-Krioukov-Nelson (1707.00655)

Hodge Numbers YHH (1706.02714) Bull-YHH-Jejjala-Mishra (1806.03121,

1903.03113), Krippendorf-Syvaeri [2003.13679] Erbin-Finotello

(2007.13379); YHH-Lukas [2009.02544] (∼ 0.99)

Distinguishing Elliptic Fibrations YHH-SJ Lee (1904.08530) (∼ 0.99)

ML now a standard programme in string community since 2017

Progress in String Theory

q.v., Review YHH 2011.14442 “Universes as Big Data” (IJMPA)
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Success Stories in String/Algebraic Geometry 2017-

q.v., Bundle Cohomology Ruehle, Brodie-Constantin-Lukas,

Larfors-Schneider, Otsuka-Takemoto, Klaewer-Schlechter

q.v., Kreuzer-Skarke Dataset Halverson, Long, Nelson; McCallister-Stillman

Calabi-Yau metric: improves Donaldson alg. for numerical CY metric by

10-100 times Ashmore–YHH–Ovrut ’19, q.v. Anderson, Gray, Krippendorf,

Raghuram, Ruehle; Douglas–Lakshminarasimhan–Qi, ’20

q.v., MSSM from orbifold models Parr-Vaudrevange-Wimmer; q.v. Particle

Masses Gal-Jejjala-Pena-Mishra . . .

TDA on cosmology and phrase transitions Cole-Shiu

q.v. Knot invariants: Jejjala-Kar-Parrikar, Craven-Jejjala-Kar

Gukov-Halverson-Ruehle-Sułkowski, using NLP

q.v. DEEP CONNECTIONS NN = everything
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from String Landscape to the Mathematical Landscape

Machine Learning Mathematical
Structures

Why stop at string/geometry?

q.v. Review Paper: YHH 2101.06317
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How does one *DO* mathematics, I ?

Russell-Whitehead Principia Mathematica [1910s] programme (since at least

Frege, even Leibniz) to axiomatize mathematics, but . . .

Gödel [1931] Incompleteness ; Church-Turing [1930s] Undecidability

Automated Theorem Proving (ATP) The practicing mathematician hardly

ever worries about Gödel

Newell-Simon-Shaw [1956] Logical Theory Machine:

proved subset of Principia theorems

Type Theory [1970s] Martin-Löf, Coquand, . . . Coq interactive proving system:

4-color (2005); Feit-Thompson Thm (2012); Lean (2013)

Univalent Foundation / Homotopy Type Theory [2006-] Voevodsky

We can call this Bottom-up Mathematics
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How does one do mathematics, II ?

Late C20th - increasing rôle of computers: 4-color [Appel-Haken-Koch 1976];

Classif. Finite Simple Groups [ Galois 1832 - Gorenstein et al. 2008] . . .

Buzzard: “Future of Maths” 2019: already plenty of proofs unchecked

(incorrect?) in the literature, MUST use computers for proof-checking;

XenaProject, Lean establish database of mathematical statements

Davenport: ICM 2018 “Computer Assisted Proofs”.

Hale & Buzzard: Foresee within 10 years AI will help prove “early PhD” level

lemmas, all of undergrad-level maths formalized;

Szegedy: more extreme view, computers > humans @ chess (1990s); @ Go

(2018); @ Proving theorems (2030)
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How does one *DO* mathematics, III ?

Historically, Maths perhaps more Top-Down: practice before foundation

Countless examples: calculus before analysis; algebraic geometry before

Bourbaki, permutation groups / Galois theory before abstract algebra . . .

A lot of mathematics starts with intuition, experience, and experimentation

The best neural network of C18-19th? brain of Gauß ; e.g., age 16

Out[ ]=

20 40 60 80 100
x

5

10

15

20

25

π(x):=#{p≤x}

(w/o computer and before complex analy-

sis [50 years before Hadamard-de la Vallée-

Poussin’s proof]): PNT π(x) ∼ x/ log(x)

BSD computer experiment of Birch & Swinnerton-Dyer [1960’s] on plots of

rank r & Np on elliptic curves
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Question

To extend the analogy: AlphaGo is top-down (need to see human games);

even AlphaZero is not bottom-up (need to generate samples of games)

In tandem with the bottom-up approach of Coq, Lean, Xena . . . how to put

in a little intuition and human results? If I gave you 100,000 cases of

e.g.

5 3 4 3 5 1 4 4 1 2
5 0 4 5 2 4 4 2 2 4
1 1 2 2 0 4 1 4 5 0
5 0 1 1 0 2 0 5 0 1
2 5 0 1 1 3 2 3 0 3
3 2 2 3 0 0 2 2 1 0
2 2 5 1 4 4 0 0 1 2
5 0 0 0 4 5 0 4 1 1
4 3 4 3 3 1 0 0 2 5
2 0 5 0 3 0 4 4 1 5

 , or, labeled data e.g.

5 3 4 3 5 1 4 4 1 2
5 0 4 5 2 4 4 2 2 4
1 1 2 2 0 4 1 4 5 0
5 0 1 1 0 2 0 5 0 1
2 5 0 1 1 3 2 3 0 3
3 2 2 3 0 0 2 2 1 0
2 2 5 1 4 4 0 0 1 2
5 0 0 0 4 5 0 4 1 1
4 3 4 3 3 1 0 0 2 5
2 0 5 0 3 0 4 4 1 5

 −→ 3

Q: Is there a pattern? Can one conjecture & then prove a formula?

Q: What branch of mathematics does it come from?

Perfect for (unsupervised & supervised) machine-learning; focus on labeled

case because it encodes WHAT is interesting to calculate (if not how).
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Mathematical Data: perfect for mining

Mathematical Data is more structured than “real world” data, much less

susceptible to noise; Outliers even more interesting, e.g. Sporadics,

Exceptionals, . . .

Last 10-20 years: large collaborations of computational mathematicians,

physicists, CS (cf. SageMATH, GAP, Bertini, MAGMA, Macaulay2, Singular,

Pari, Wolfram, . . . ) computed and compiled vast data

links

Generic computation HARD

mining provides some level of “intuition” & is based on “experience”
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Methodology

Bag of Tricks Hilbert’s Programme of Finitary Methods, Landau’s theoretical

minimum, Migdal’s Mathmagics . . .

IMO Grand Challenge (2020-) Good set of concrete problems to try on AI

Standard Supervised ML Methods Regressor & Classifiers

NN: MLPs; CNNs; RNNs, . . . (gentle tuning of architecture and

hyper-parameters)

SVM, Bayes, Decision Trees, PCA, Clustering, . . .

ML: emergence of complexity via connectivity ; Intution (?)

This Talk: Status Report of Experiments in the last couple of years

all standard methods ' same performance

∼ 20-80 split; training on 20
(
precision, Matthews’ φ or R2

)
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Representation/Group Theory

ML Algebraic Structures (GAP DB) [YHH-MH. Kim 1905.02263,

YHH-Jejjala-Mishra-Sharnoff, to appear]

When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite

group? Bypass quadrangle thm (0.95, 0.9)

Can one look at the Cayley table and recognize a finite simple group?

bypass Sylow and Noether Thm; (0.97, 0.95) rmk: can do it via character-table

T , but getting T not trivial

SVM: space of finite-groups (point-cloud of Cayley tables) seems to exist a

hypersurface separating simple/non-simple

ML Lie Structure Chen-YHH-Lal-Majumder [2011.00871] Weight vector → length

of irrep decomp / tensor product: (0.97, 0.93); (train on small dim, predict high dim: (0.9, 0.8))

[Chen-YHH-Lal-Zas 2006.16114]: even/odd/reflection sym (>0.99); distinguishing CFT

3pt functions (>0.99); Fourier coefficients / conformal block presence (>0.97) . . .
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Combinatorics, Graph/Quivers

[YHH-ST. Yau 2006.16619] Wolfram Finite simple graphs DB

ML standard graph properties:

?acyclic (0.95, 0.96); ?planar (0.8, 0.6); ?genus >,=, < 0 (0.8, 0.7); ?∃

Hamilton cycles (0.8, 0.6); ?∃ Euler cycles (0.8, 0.6)

(Rmk: NB. Only “solving” the likes of traveling salesman stochastically)

spectral bounds (R2 ∼ 0.9) . . .

Recognition of Ricci-Flatness (0.9, 0.9) (todo: find new Ricci-flat graphs);

[Bao-Franco-YHH-Hirst-Musiker-Xiao 2006.10783]: categorizing different

quiver mutation (Seiberg-dual) classes (0.9 - 1.0, 0.9)
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Number Theory: A Classical Reprobate?

Arithmetic (prime numbers are Difficult!)

[YHH 1706.02714, 1812.02893:]

Predicting primes 2→ 3, 2, 3→ 5, 2, 3, 5→ 7; no way

fixed window of (yes/no)1,2,...,k to (yes/no)k+i for some i; ML PRIMES

problem (0.7, 0.8) NOT random! (prehaps related to AKS algorithm [2002],

PRIMES is in P)

Sarnak’s challenge: same window → Liouville Lambda (0.5, 0.001) Truly

random (no simple algorithm for Lambda)

[Alessandretti-Baronchelli-YHH 1911.02008] (New Scientist, feature, Dec

2019) ML/TDA@Birch-Swinnerton-Dyer X and Ω ok with regression &

decision trees: RMS < 0.1; Weierstrass → rank: random
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Number Theory: A Modern Hope?

Arithmetic Geometry (Surprisingly Good)

[Hirst-YHH-Peterken 2004.05218]: adjacency+permutation triple of dessin

d’enfants (Grothendieck’s Esquisse for Gal(Q/Q)) ; predicting transcendental

degree (0.92, 0.9)

YHH-KH Lee-Oliver arithmetic of curves

2010.01213: Complex Multiplication, Sato-Tate (0.99 ∼ 1.0, 0.99 ∼ 1.0)

2011.08958: Number Fields: rank and Galois group (0.97, 0.9)

2012.04084: BSD from Euler coeffs, integer points, torsion (0.99, 0.9);

Tate-Shafarevich X (0.6, 0.8) [Hardest quantity of BSD]
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Clearly useful for maths and physics

looking for new conjectures e.g.,

’19 YHH-Kim: separating hyperplane - simple/non-simple groups; open

’19 Brodie-Constantin-Lukas: exact formulae for cohomo surf.; proved.

’20 YHH-Lee-Oliver: L-coefs and integer pt./torsion on ell; proved.

’20 Craven-Jejjala-Par: Jones poly best-fit function; open

. . .

speed up computations and accuracies e.g.,

computing/estimating (top.inv., charges, etc) MUCH FASTER

’19 Ashmore-YHH-Ovrut: speed up Donaldson alg@CY metric 10-100

’20 Douglas et al., Anderson et al. accuracy improvement on Donaldson

10-100 times

. . .
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The other Extreme (?) View-Point

On the other hand, what is analyticity?

n-th pime =
⌊
n! mod (n+1)

n

⌋
(n− 1) + 2 (not efficient)

bundle-cohomology:

Bott for Projective space:

hq(Pn, (∧pTPn)⊗O(k)) =


(
k+n+p+1

p

)(
k+n
n−p

)
q = 0 k > −p − 1,

1 q = n − p k = −n − 1,(−k−p−1
−k−n−1

)(−k−n−2
p

)
q = n k < −n − p − 1,

0 otherwise

e.g. (2, 4)-CY3 hypersurface:

hq(X,OX(−k,m)) =

 (k + 1)
(
m
3

)
− (k − 1)

(
m+3

3

)
q = 0 k <

(1+2m)(6+m+m2)
3(2+3m(1−m))

(k − 1)
(
m+3

3

)
− (k + 1)

(
m
3

)
q = 1 k >

(1+2m)(6+m+m2)
3(2+3m(1−m))

0 otherwise

. . .

better suited for a computer programme any way
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An Inherent Hierarchy?

In decreasing precision/increasing difficulty:y
numerical

string theory → algebraic geometry over C ∼ arithmetic geometry

algebra

string theory → combinatorics

analytic number theory

Categorical Theory

suggested by & in prog. w/ B. Zilber, Merton Prof. of Logic, Ox

major part of Model Theory: Morley-Shelah Categoricity Thm

Hart-Hrushovski-Laskowski Thm: 13 classes (levels) of iso-classes I(T, k) of a

theory T in first order logic over some cardinality k.
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Semantics vs Syntax

Alpha Go → Alpha Zero

ML → Voevodsky’s Dream;

Automated Thm Pf

Renner et al., PRL/Nature News, 2019:

ML (SciNet, autoencoder)

Lample-Charton, 2019: ML Symolic

manipulations in mathematics

Tegmark et al., 2019 AI Feynman, symb

regressor

Raayoni et al. 2020 Ramanujan-Machine

Sophia (Hanson Robotics, HK)

1st non-human citizen (2017, Saudi)

1st non-human with UN title (2017)

1st String Data Conference (2017)
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THANK YOU

Paolo Di Vecchia: String theory is a piece of 21st century physics that

happened to fall into the 20th century . . .

Edward Witten: piece of 21st century mathematics that happened to begin in

the 20th century . . .

Alexander Kaspryzyk; Kevin Buzzard: Letting AI/ML do mathematics could

well be the standard for the 22nd century . . .
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Digressions
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χ(Σ) = 2 χ(Σ) = 0 χ(Σ) < 0

Spherical Ricci-Flat Hyperbolic

+ curvature 0 curvature − curvature

Fano Calabi-Yau General Type

Euler, Gauss, Riemann, Bourbaki, Atiyah-Singer . . .; generalize

χ(Σ) = 2− 2g(Σ) = [c1(Σ)] · [Σ] =
1

2π

∫
Σ

R =

2∑
i=0

(−1)ihi(Σ)

CONJECTURE [E. Calabi, 1954, 1957] / Thm [ST. Yau, 1977-8] M compact

Kähler manifold (g, ω) and ([R] = [c1(M)])H1,1(M). Then ∃!(g̃, ω̃) such that

([ω] = [ω̃])H2(M ;R) and Ricci(ω̃) = R.

Strominger & Yau were neighbours at IAS in 1985: CHSW named Ricci-Flat

Kähler as Calabi-Yau Back
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16 Reflexive Polygons Back to Reflexives

classify convex lattice

polytopes with single in-

terior point and all faces

are distance 1 therefrom

(up to SL(n;Z))

Kreuzer-Skarke: 4319 reflexive polyhedra, 473,800,776 reflexive 4-polytopes,

Skarke: next number is at least 185,269,499,015.
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Heterotic Comp: Recent Development

E6 GUTs a toy, SU(5) and SO(10) GUTs and SM: general embedding

Instead of TX, use (poly-)stable holomorphic vector bundle V

Gauge group(V ) = G = SU(n), n = 3, 4, 5, gives H = Commutant(G,E8):

E8 → G ×H Breaking Pattern

SU(3) × E6 248 → (1, 78) ⊕ (3, 27) ⊕ (3, 27) ⊕ (8, 1)

SU(4) × SO(10) 248 → (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)

SU(5) × SU(5) 248 → (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5) ⊕ (10, 5̄) ⊕ (24, 1)

MSSM: H Wilson Line−→ SU(3)× SU(2)× U(1)

Issues in low-energy physics ∼ Precise questions in Alg Geo of (X,V )

Particle Content ∼ (tensor powers) V Bundle Cohomology on X

LE SUSY ∼ Hermitian Yang-Mills connection ∼ Bundle Stability

Yukawa ∼ Trilinear (Yoneda) composition

Doublet-Triplet splitting ∼ representation of fundamental group of X

Back to Landscape
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Various Databases

Kreuzer-Skarke: http://hep.itp.tuwien.ac.at/~kreuzer/CY/

new PALP: Braun-Walliser: ArXiv 1106.4529

Triang: Altmann-YHH-Jejjala-Nelson: http://www.rossealtman.com/

CICYs: resurrected Anderson-Gray-YHH-Lukas, http://www-thphys.

physics.ox.ac.uk/projects/CalabiYau/cicylist/index.html

q.v. other databases of interesting to the math/physics community:

Graded Rings/Varieties: Brown, Kasprzyk, et al. http://www.grdb.co.uk/

Finite Groups/Rings: GAP https://www.gap-system.org/

Modular Forms: Sutherland, Cremona et al. https://www.lmfdb.org/

Knots & Invariants: KnotAtlas http://katlas.org/ Return

. . .
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Progress in String Theory Back to ML/Maths

Major International Annual Conference Series

1986- First “Strings” Conference

2002- First “StringPheno” Conference

2006 - 2010 String Vacuum Project (NSF)

2011- First “String-Math” Conference

2014- First String/Theoretical Physics Session in SIAM Conference

2017- First “String-Data” Conference
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A Single Neuron: The Perceptron

began in 1957 (!!) in early AI experiments (using CdS photo-cells)

DEF: Imitates a neuron: activates upon certain inputs, so define

Activation Function f(zi) for input tensor zi for some multi-index i;

consider: f(wizi + b) with wi weights and b bias/off-set;

typically, f(z) is sigmoid, Tanh, etc.

Given training data: D = {(x(j)
i , d(j)} with input xi and known output d(j),

minimize

SD =
∑
j

(
f(
∑
i

wix
(j)
i + b)− d(j)

)2

to find optimal wi and b ; “learning”, then check against Validation Data

Essentially (non-linear) regression
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The Neural Network: network of neurons ; the “brain”

DEF: a connected graph, each node is a perceptron (Implemented on

Mathematica ≥ 11.1 / TensorFlow-Keras on Python)

1 adjustable weights/bias;

2 distinguished nodes: 1 set for input and 1 for output;

3 iterated training rounds.

Simple case: forward directed only,

called multilayer perceptron

Many Layers : DEEP Learning

Connectivity ; Emergence of Complexity

Essentially how brain learns complex tasks; apply to our Landscape Data

Back to Landscape
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CICYs

M =


n1 q1

1 q2
1 . . . qK1

n2 q1
2 q2

2 . . . qK2
...

...
...

. . .
...

nm q1
m q2

m . . . qKm


m×K

− Complete Intersection Calabi-Yau (CICY) 3-folds

− K eqns of multi-degree qij ∈ Z≥0

embedded in Pn1 × . . .× Pnm

− c1(X) = 0 ;
K∑
j=1

qjr = nr + 1

− MT also CICY

The Quintic Q = [4|5]1,101
−200 (or simply [5]);

CICYs Central to string pheno in the 1st decade [Distler, Greene, Ross, et al.]

E6 GUTS unfavoured; Many exotics: e.g. 6 entire anti-generations

Back to CICYs



AdS/CFT as a Quiver Rep/Moduli Variety Corr.

a 20-year prog. joint with A. Hanany, S. Franco, B. Feng, et al.

U(N)

N D3−Branes

World−Volume = 

Quiver Gauge Theory

CY3 Cone

Sasaki−Einstein 5−fold

Toric

Singularities

Generic

Orbifolds

del Pezzo

Abelian

Orbifolds

Local CY3

C

C
3.

.

D-Brane Gauge Theory

(SCFT encoded as quiver)

←→

Vacuum Space as affine Variety

(N = 4 SYM)

(
X

YZ

,W = Tr([x, y], z)

)
←→ C3 = Cone(S5) [Maldacena]

THM [(P) Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki,

Zaffaroni . . . (M) R. Böckland, N. Broomhead, A. Craw, A. King, G. Musiker, K. Ueda . . . ] (coherent

component of) representation variety of a quiver is toric CY3 iff quiver +

superpotential graph dual to a bipartite graph on T 2 Back to Landscape

combinatorial data/lattice polytopes ←→ gauge thy data as quivers/graphs
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Computing Hodge Numbers O(eed)

Recall Hodge decomposition Hp,q(X) ' Hq(X,∧pT ?X) ;

H1,1(X) = H1(X,T ?X), H2,1(X) ' H1,2 = H2(X,T ?X) ' H1(X,TX)

Euler Sequence for subvariety X ⊂ A is short exact:

0→ TX → TM |X → NX → 0

Induces long exact sequence in cohomology:

0 → ��
���

�: 0

H0(X,TX) → H0(X,TA|X) → H0(X,NX) →

→ H1(X,TX)
d→ H1(X,TA|X) → H1(X,NX) →

→ H2(X,TX) → . . .

Need to compute Rk(d), cohomology and Hi(X,TA|X) (Cf. Hübsch)

Back to ML
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Deep Connections

K. Hashimoto 2019-: AdS/CFT = Boltzmann Machine;

Halverson-Maiti-Stoner 2020: QFT = NN;

de Mello-Koch 2020: NN = RG;

Vanchurin 2008: Universe = NN.

Back to ML Maths
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Back to Word2Vec

gr-qc hep-lat
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Classifying Titles

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

````````````Actual

Word2Vec + SVM
1 2 3 4 5

1 40.2 6.5 8.7 24.0 20.6

2 7.8 65.8 12.9 9.1 4.4

3 7.5 11.3 72.4 1.5 7.4

4 12.4 4.4 1.0 72.1 10.2

5 10.9 2.2 4.0 7.8 75.1


1 : hep-th

2 : hep-ph

3 : hep-lat

4 : gr-qc

5 : math-ph

PPPPPPPPActual

NN
1 2 3 4 5 6 7 8 9 10

viXra-hep 11.5 47.4 6.8 13. 11. 4.5 0.2 0.3 2.2 3.1

viXra-qgst 13.3 14.5 1.5 54. 8.4 1.8 0.1 1.1 2.8 3.

6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India Back to Main
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Explicit Examples of Calabi-Yau Spaces

An interesting sequence: 1,2, ??? . . .

dimC = 1
Torus T 2 = S1 × S1

QFT in 10− 2 = 8d

dimC = 2

(1) 4-Torus T 4 = S1×S1×S1×S1

(2) K3 surface

QFT in 10− 4 = 6d

dimC = 3

Unclassified ???

(Yau’s Conjecture: Finite Number)

Desired QFT in 10− 6 = 4d
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游戏介绍（from https://www.9k9k.com/shouyou/klbq/）
《卡拉比丘》是一款宏大世界观的动作游戏。采用5V5的战斗模式，
玩家需要选择自己的阵营，操控英雄探索地图，与队友密切协作，
战胜敌人玩家即可获得比赛的胜利，更有上百位美少女英雄等待你的召
唤！

CalabiYau the Game

Back to CY
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Triadophilia

Exact (MS)SM Particle Content from String Compactification

[Braun-YHH-Ovrut-Pantev, Bouchard-Cvetic-Donagi 2005] first exact MSSM

[Anderson-Gray-YHH-Lukas, 2007-] use alg./comp. algebraic geo & sift

Anderson-Gray-Lukas-Ovrut-Palti ∼ 200 in 1010 MSSM Stable Sum of Line Bundles

over CICYs (Oxford-Penn-Virginia 2012-)

Constantin-YHH-Lukas ’19: 1023 exact MSSMs (by extrapolation on above set)?
A Special Corner [New Scientist,

5/1/2008 feature]

Candelas-de la Ossa-YHH-Szendroi

“Triadophilia: A Special Corner of the Land-

scape” ATMP, 2008

Back to String Landscape
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