MACHINE LEARNING AS A DISCOVERY TOOL

Vishnu Jejjala

University of the Witwatersrand

The Beginning

Image: Karen Carr

Fundamental Questions

- How did the Universe begin?
- Why is the world the way it is?
- Could it have been some other way?
- What is the fundamental explanation for space, time, and matter?

How We Do Physics

- Interrogate a theory at its limits and test it against other theories
- Investigate the tensions

A gedankenexperiment

Turn on the headlight of your bicycle

Suppose you bicycle faster than light

What do you see?

This thought experiment brings
Galileo and Maxwell into tension

Special Relativity

- Every observer measures the same speed of light
- The Universe has a speed limit

Special Relativity

- Every observer measures the same speed of light
- The Universe has a speed limit

I OBEY THE SPEED LIMITS NO MATTER HOW STUPID THEY ARE

Theories Beget Theories

• By testing electromagnetism against Galilean mechanics, we arrive at the special theory of relativity

Theories Beget Theories

- By testing electromagnetism against Galilean mechanics, we arrive at the special theory of relativity
- Let's continue on this path

General Relativity

Image: Dave Jarvis

Force of gravity is geometry

Verified from microns to cosmic scales

Another gedankenexperiment

What happens if the Sun suddenly disappeared?

Tension between Newton and Einstein

Image: ESA/NASA (HST)

Theory Space

Quantum Field Theory

- A field has a value at every point in spacetime
- Particles are local excitations of these fields

• To define a quantum field theory, we must specify the fields and how they interact

• Electrons and positrons interact by exchanging photons, for example

Quantum Field Theory

- Fundamental forces are described by quantum field theory
- Standard Model

electromagnetism
weak force
strong force
Higgs effect

$$\alpha_{\text{exp}}^{-1} = 137.035999139(31)$$
 $\alpha_{\text{th}}^{-1} = 137.035999173(35)$

One Theory of Physics

- Gravity is a response to curvature, but we experience this as a force
- Matter couples to geometry via mass
- What happens if we treat geometry as a quantum field?

One Theory of Physics

- Gravity is a response to curvature, but we experience this as a force
- Matter couples to geometry via mass
- What happens if we treat geometry as a quantum field?

What Went Wrong?

- General relativity explains the dynamical response of geometry to the presence of matter or energy and conversely the dynamical response of matter to the curvature of spacetime
- In a quantum Universe, things fluctuate due to the uncertainty principle

- Because spacetime itself fluctuates at the quantum level, one of the central assumptions of general relativity, that geometry is smooth, breaks down
- Quantum field theory is not the organizing principle

Image: Brian Greene

A New Hope

Bronstein's Cube

Bronstein's Cube

FIELDS INTERACT VIA GAUGE FORCES

PARTICLES ARE FIELD EXCITATIONS

String Theory

Gravity as a QFT

Gravity from String Theory

These are infinite

These are finite

These are four dimensional

These are ten dimensional

[To prove the consistency of string theory we use the remarkable fact that $\sum_{n=1}^{\infty} n \longrightarrow -\frac{1}{12}$]

• $X^{\mu}: \Sigma \to \mathcal{M}$

Sigma model on the string worldsheet gives general relativity

String Theory

- String theory is in fact a web of interconnected theories in ten (or eleven or twelve) dimensions
- We experience only four dimensions. So how do we proceed?

The Forces of Nature

Gravitational interactions described by Einstein

$$G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \frac{8\pi G_N}{c^4}T_{\mu\nu}$$

Standard Model

electromagnetism
weak force
strong force
Higgs effect

The Forces of Nature

Gravitational interactions described by Einstein

$$G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \frac{8\pi G_N}{c^4}T_{\mu\nu}$$

Non-gravitational interactions are not encoded as geometry

Theorem [Coleman–Mandula]: symmetry group in 4 dimensions is Poincaré x internal

The Forces of Nature

Gravitational interactions described by Einstein

$$G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \frac{8\pi G_N}{c^4}T_{\mu\nu}$$

Non-gravitational interactions are not encoded as geometry

Theorem [Coleman–Mandula]: symmetry group in 4 dimensions is Poincaré x internal

• <u>Clever loophole:</u> internal symmetries may arise from higher dimensional geometry

Kaluza–Klein: 5d Einstein equations give 4d Einstein + Maxwell equations

Geometric Engineering

- Higher dimensional objects in string theory (branes) on which QFTs live
- Ten dimensional theory is consistent
- Ansatz for the geometry is $\mathcal{M}_{10} = \mathbb{R}^{1,3} \times \mathrm{CY}_3$

Properties of Calabi–Yau determine physics in four dimensions

Example: $N_g = \frac{1}{2}|\chi|$ in simplest heterotic compactification models

Candelas, Horowitz, Strominger, Witten (1985) Greene, Kirklin, Miron, Ross (1986)

Geometric Engineering

- Higher dimensional objects in string theory (branes) on which QFTs live
- Ten dimensional theory is consistent
- Ansatz for the geometry is $\, {\cal M}_{10} = \mathbb{R}^{1\!\!/3} imes \mathrm{CY}_3 \,$ $\, \mathrm{dS}_4 \,$
- Properties of Calabi–Yau determine physics in four dimensions

Example: $N_g = \frac{1}{2}|\chi|$ in simplest heterotic compactification models

Candelas, Horowitz, Strominger, Witten (1985) Greene, Kirklin, Miron, Ross (1986)

The Real World

- String theory supplies a framework for quantum gravity
- We are beginning to understand black holes and holography
- String theory is also an organizing principle for mathematics
- Finding our universe among the myriad of possible consistent realizations of a four dimensional low-energy limit of string theory is the **vacuum** selection problem
- Most vacua are *false* in that they do not resemble Nature at all
- Among the landscape of possibilities, we do not have even one solution that reproduces all the particle physics and cosmology we know

The Unreal World

- The objective is to obtain the real world from a string compactification
- We would happily settle for a modestly unreal world

$$\mathcal{N} = 1$$
 supersymmetry in 4 dimensions

$$G = SU(3)_C \times SU(2)_L \times U(1)_Y$$

Matter in chiral representations of G:

$$(\mathbf{3},\mathbf{2})_{\frac{1}{6}}, (\overline{\mathbf{3}},\mathbf{1})_{-\frac{2}{3}}, (\overline{\mathbf{3}},\mathbf{1})_{\frac{1}{3}}, (\mathbf{1},\mathbf{2})_{\pm\frac{1}{2}}, (\mathbf{1},\mathbf{1})_{1}, (\mathbf{1},\mathbf{1})_{0}$$

Superpotential
$$W \supset \lambda^{ij} \phi \overline{\psi}_L^i \psi_R^j$$

Three copies of matter such that λ^{ij} not identical

Consistent with cosmology

The Unreal World

- The objective is to obtain the real world from a string compactification
- We would happily settle for a modestly unreal world

 $\mathcal{N} = 1$ supersymmetry in 4 dimensions

No experimental evidence so far!

$$Q|\lambda\rangle \sim |\lambda \pm \frac{1}{2}\rangle$$

 $|boson\rangle \longleftrightarrow |fermion\rangle$

$$m_H \ll m_P$$

The Unreal World

- The objective is to obtain the real world from a string compactification
- We would happily settle for a modestly unreal world

 $\mathcal{N} = 1$ supersymmetry in 4 dimensions

Because it is Ricci flat, the Calabi–Yau geometry ensures 4d supersymmetry

Use topological and geometric features of the Calabi–Yau to recover aspects of the real world

PREDICTING A CALABI~YAU'S

TOPOLOGICAL INVARIANTS

Calabi-Yau

Calabi-Yau

There is a nowhere vanishing holomorphic n-form

The canonical bundle is trivial

There is a Kähler metric with holonomy in SU(n)

Reflexive Polytopes

• Starting from a reflexive polytope, one can build a toric Calabi—Yau via methods of Batyrev, Borisov

Reflexive Polytopes Catalogued

- Starting from a reflexive polytope, one can build a toric Calabi—Yau via methods of Batyrev, Borisov
- Kreuzer–Skarke obtained 473,800,776 reflexive polytopes that yield toric Calabi–Yau threefolds with 30,108 unique pairs of Hodge numbers

 Distribution of polytopes exhibits mirror symmetry

Reflexive Polytopes Catalogued

- Starting from a reflexive polytope, one can build a toric Calabi—Yau via methods of Batyrev, Borisov
- Kreuzer–Skarke obtained 473,800,776 reflexive polytopes that yield toric Calabi–Yau threefolds with 30,108 unique pairs of Hodge numbers

- Distribution of polytopes exhibits mirror symmetry
- The peak of the distribution is at $(h^{1,1}, h^{1,2}) = (27, 27)$ There are 910,113 such polytopes
- Are there patterns in how the topological invariants are distributed?

Torus

Flat, but has non-trivial homotopy

There are non-contractible cycles

 $y = \operatorname{Im} z$

size

complex structure parameter: τ shape

Kähler parameter: area A

 $ds^2 = R_1^2 dx^2 + R_2^2 dy^2 + 2R_1 R_2 \cos \theta dx dy$

 $A = R_1 R_2 \sin \theta$

 $x = \operatorname{Re} z$

Moduli of CY₃

 Geometrical moduli enumerated by number of embedded two-spheres and three-spheres

 $h^{1,2}=rac{b_3}{2}-1$ complex structure moduli, counts the number of three-cycles $h^{1,1}=b_2$ Kähler moduli, counts the number of two-cycles and four-cycles $\chi=2(h^{1,1}-h^{1,2})$ Euler characteristic, $N_g=rac{1}{2}|\chi|$

• **Mirror symmetry** says that we can rotate the Hodge diamond by $\pi/2$ and get a new Calabi–Yau with $h^{1,1} \leftrightarrow h^{1,2}$

3d Plots of Polytope Data

Patterns in CY Distributions

Patterns in CY Distributions

Pseudo-Voigt distribution

sum of Gaussian and Cauchy

$$(1-\alpha)\frac{A}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} + \alpha\frac{A}{\pi}\left[\frac{\sigma^2}{(x-\mu)^2 + \sigma^2}\right]$$

Planck distribution

$$\frac{A}{x^n} \frac{1}{e^{b/(x-c)} - 1}$$

From Polytopes to Geometries

- A **triangulation** of \mathcal{P} is a partition into simplices such that: the union of all simplices is \mathcal{P} the intersection of any pair is a (possibly empty) common face
- From triangulation, we construct the Stanley–Reisner ring
- Unique rings correspond to different Calabi-Yau geometries
- For each, we have topological data, intersection form, Kähler cone

Example: S²

$$I_{\Delta} = (ad, bce)$$

minimal non-faces

$$\mathbb{K}_{\Delta} = \mathbb{K}[a, b, c, d, e]/I_{\Delta}$$

Stanley-Reisner ring

Homeomorphic to two-sphere

From Polytopes to Geometries

- Every triangulation of a reflexive polytope can yield a Calabi-Yau
- We do not know how many toric Calabi-Yau geometries there are
- Different triangulations of the same polytope are expected, in general, to give different Calabi–Yau manifolds
- In principle, triangulations of different polytopes can give the same Calabi—Yau manifold
- The Calabi–Yau inherits topological invariants from the polytope
- 16 polytopes in \mathbb{R}^2 give rise to elliptic curves (Calabi–Yau onefolds) 4319 polytopes in \mathbb{R}^3 give rise to K3 (Calabi–Yau twofolds) 473800776 polytopes in \mathbb{R}^4 give rise to at least 30108 Calabi–Yau threefolds

A Calabi-Yau Database

CICYs

Zero locus of a set of homogeneous polynomials over combined set of coordinates of projective spaces

$$X = \begin{bmatrix} \mathbb{P}^{n_1} & q_1^1 & \cdots & q_K^1 \\ \vdots & \ddots & \vdots \\ \mathbb{P}^{n_\ell} & q_1^\ell & \cdots & q_K^\ell \end{bmatrix}_{\chi}$$

$$\text{configuration matrix}$$

$$\sum_{r} n_r - K = 3 \quad \text{complete intersection}$$
threefold

$$\sum_{r} n_r - K = 3$$
 complete intersection threefold $\sum_{r} q_a^r = n_r + 1$, $\forall \ r \in \{1, \dots, \ell\}$ $c_1 = 0$

- K equations of multi-degree $q_a^r \in \mathbb{Z}_{>0}$ embedded in $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_\ell}$
- **Example:** quintic $\mathbb{P}^4(5)_{-200}$
- Other examples:

$$\mathbb{P}^5(3,3)_{-144}$$
, $\mathbb{P}^5(4,2)_{-176}$, $\mathbb{P}^6(3,2,2)_{-144}$, $\mathbb{P}^7(2,2,2,2)_{-128}$

CICYs

• Tian-Yau manifold:

$$\mathbb{P}^{3} \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix}_{-18} \iff
\begin{aligned}
a^{\alpha\beta\gamma}w_{\alpha}w_{\beta}w_{\gamma} &= 0 \\
b^{\alpha\beta\gamma}z_{\alpha}z_{\beta}z_{\gamma} &= 0 \\
c^{\alpha\beta}w_{\alpha}z_{\beta} &= 0
\end{aligned}$$

$$c^{\alpha\beta}w_{\alpha}z_{\beta} &= 0$$

freely acting \mathbb{Z}_3 quotient gives manifold with $\chi=-6$ central to early string phenomenology

• Transpose is Schön's manifold, also Calabi–Yau

$$\mathbb{P}^{2} \quad \begin{pmatrix} 3 & 0 \\ 0 & 3 \\ 1 & 1 \end{pmatrix} \\
\chi = 0$$

$$h^{1,1} = h^{1,2} = 19$$

• Can compute χ from configuration matrix

$$\frac{1}{3} \cdot 5 \cdot (5 - 5^3) = -200$$

$$\frac{1}{3} \cdot (4 \times 2) \cdot (6 - 4^3 - 2^3) = -176$$

$$\frac{1}{3} \cdot (3 \times 3) \cdot (6 - 3^3 - 3^3) = -144$$

•

CICYs

• We have: 7890 configuration matrices

Candelas, He, Hübsch, Lutken, Lynker, Schimmrigk, Berglund (1986-1990)

$$1 \times 1$$
 to 12×15 with $q_a^r \in [0, 5]$

266 distinct Hodge pairs
$$0 \le h^{1,1} \le 19$$
, $0 \le h^{1,2} \le 101$

70 distinct Euler characters
$$\chi \in [-200, 0]$$

195 have freely acting symmetries, 37 different finite groups

from
$$\mathbb{Z}_2$$
 to $\mathbb{Z}_8 \rtimes H_8$

Braun (2010)

• By comparison, for fourfolds, there are 921497 CICYs

$$4h^{1,1} - 2h^{1,2} + 4h^{1,3} - h^{2,2} + 44 = 0$$

Most of these are elliptically fibered

Gray, Haupt, Lukas (2013)

CICY Hodge Numbers

Feedforward Neural Networks

Input vector

Schematic representation of feedforward neural network. The top figure denotes the perceptron (a single neuron), the bottom, the multiple neurons and multiple layers of the neural network.

Support Vector Machines

SVM separation boundary calculated using our cvxopt implementation with a randomly generated data set.

Genetic Algorithms

Used to fix hyperparameters (e.g., number of hidden layers and neurons in them, activation functions, learning rates and dropout) in neural network.

Machine Learning h^{1,1}

- Since we know $\chi = 2(h^{1,1} h^{1,2})$ from intersection matrix, we choose to machine learn $h^{1,1} \in [0,19]$
- Previous efforts discriminated large and small $h^{1,1}$
- Use Neural Network classifier/regressor and SVM regressor

Machine Learning h^{1,1}

	Accuracy	RMS	R^2	WLB	WUB
SVM Reg	0.70 ± 0.02	$\boldsymbol{0.53} {\pm}~0.06$	$\textbf{0.78} \pm \textbf{0.08}$	0.642	0.697
NN Reg	0.78 ± 0.02	0.46 ± 0.05	0.72 ± 0.06	0.742	0.791
NN Class	$\boldsymbol{0.88 \pm 0.02}$	-	-	0.847	0.886

RMS :=
$$\left(\frac{1}{N} \sum_{i=1}^{N} (y_i^{pred} - y_i)^2\right)^{1/2}$$
 $R^2 := 1 - \frac{\sum_i (y_i - y_i^{pred})^2}{\sum_i (y_i - \bar{y})^2}$

Wilson upper/lower bounds (WUB/WLB)

y_i	actual value
$ar{y}$	average value
y_i^{pred}	predicted value
p	probability of successful prediction
z	probit
n	number of samples

Machine Learning h^{1,1}

Quo Vadis?

The Good

During the last 10-15 years, several international collaborations have computed geometrical and physical quantities and compiled them in vast databases that partially describe the string landscape

The Bad

Computations are hard, especially for a comprehensive treatment: dual cone algorithm (exponential), triangulation (exponential), Gröbner basis (double exponential), how to construct stable bundles over Calabi–Yau manifolds constructed from half a billion polytopes?

The Possibly Beautiful

Borrow techniques from "Big Data"

Machine Learning CICYs

Subsequent work on topology of CICYs

```
Bull, He, VJ, Mishra (2019)
```

Erbin, Finotello (2020)

- Metrics on CICYs
 - not known analytically
 - needed, e.g., to compute mass of electron

```
Ashmore, Ovrut, He (2019)
```

Anderson, Gerdes, Gray, Krippendorf, Raghuram, Rühle (2020)

Douglas, Lakshminarasimhan, Qi (2020)

VJ, Mayorga Peña, Mishra (2020)

Calabi-Yau Threefolds

• Reid's fantasy: space of Calabi-Yaus is connected

Knot: $S^1 \subset S^3$; e.g., unknot three-twist 0_{1} 5_2 trefoil cinquefoil 3_1 5_1 figure-eight

Thistlethwaite unknot

Ochiai unknot

 $\underline{\text{Knot:}} \ S^1 \subset S^3 \ ; \textit{e.g.},$

Jones polynomial:
$$J(K;q) = (-q^{\frac{3}{4}})^{w(K)} \frac{\langle K \rangle}{\langle O \rangle}$$
 $\langle X \rangle = q^{\frac{1}{4}} \langle X \rangle + \frac{1}{q^{\frac{1}{4}}} \langle X \rangle = 0$ $\langle X \rangle = 0$

$$\left\langle \left\langle \right\rangle \right\rangle = q^{\frac{1}{4}} \left\langle \left\langle \right\rangle \right\rangle + \frac{1}{q^{\frac{1}{4}}} \left\langle \right\rangle \left\langle \right\rangle$$

$$J(\bigcirc;q)=1$$

Jones (1985)

topological invariant: independent of how the knot is drawn

<u>Question:</u> how to calculate these?

Answer: quantum field theory!

Chern-Simons Theory

- What is the simplest non-trivial quantum field theory?
 - <u>Chern-Simons theory</u> in three dimensions
- Focus on **topology** instead of geometry

genus 0

Knot: $S^1 \subset S^3$; e.g.,

Jones polynomial:
$$J(K;q) = (-q^{\frac{3}{4}})^{w(K)} \frac{\langle K \rangle}{\langle \bigcirc \rangle}$$
 $\langle \stackrel{}{\times} \rangle = q^{\frac{1}{4}} \langle \stackrel{}{\sim} \rangle + \frac{1}{q^{\frac{1}{4}}} \langle \stackrel{}{\rangle} \rangle \langle \stackrel{}{\rangle}$ $w(K) = \text{overhand} - \text{underhand}$

$$\left\langle \right\rangle \left\rangle = q^{\frac{1}{4}} \left\langle \right\rangle \right\rangle + \frac{1}{q^{\frac{1}{4}}} \left\langle \right\rangle \left\langle \right\rangle$$

vev of Wilson loop operator along K in

 \square for SU(2) Chern-Simons on S^3

$$J_2(4_1;q) = q^{-2} - q^{-1} + 1 - q + q^2$$
, $q = e^{\frac{2\pi i}{k+2}}$

<u>Hyperbolic volume</u>: volume of $S^3 \setminus K$ is another knot invariant

computed from tetrahedral decomposition of knot complement

Volume conjecture:

$$\lim_{n \to \infty} \frac{2\pi \log |J_n(K; \omega_n)|}{n} = \operatorname{Vol}(S^3 \setminus K)$$

$$\omega_n = e^{\frac{2\pi i}{n}}$$

In fact, we take $n, k \to \infty$

Behavior is not monotonic!

Gukov (2005)

Volume conjecture:

$$\lim_{n\to\infty}\frac{2\pi\log|J_n(K;\omega_n)|}{n}=\operatorname{Vol}(S^3\setminus K) \qquad \text{Murakami x 2 (2001)} \atop \operatorname{Gukov (2005)}$$

Khovanov homology:

a homology theory \mathcal{H}_K whose graded Euler characteristic is $J_2(K;q)$; explains why coefficients are integers

Khovanov (2000) Bar-Natan (2002)

$$\log |J_2(K;-1)|$$
, $\log (\operatorname{rank}(\mathcal{H}_K)-1) \propto \operatorname{Vol}(S^3 \setminus K)$ Dunfield (2000) Khovanov (2002)

Neural Network

 100×18 100×100 $\frac{1}{2}$ 12000 hyperparameters

Jones polynomials are represented as 18-vectors

$$\vec{J}_K = (\min, \max, \text{coeffs}, 0, \dots, 0)$$

Two layer neural network in Mathematica

$$f_{\theta}(\vec{J}_K) = \sum_{a} \sigma \left(W_{\theta}^2 \cdot \sigma(W_{\theta}^1 \cdot \vec{J}_K + \vec{b}_{\theta}^1) + \vec{b}_{\theta}^2 \right)^a$$

Logistic sigmoids for the hidden layers

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Neural Network

Prediction from Neural Network

trained on 10% of the 313, 209 knots up to 15 crossings

Result

$$v_i = f(J_i) + \text{small corrections}$$

• J_i does not uniquely identify a knot e.g., 4_1 and K11n19 have same Jones polynomial, different volumes

- 174,619 unique Jones polynomials
 2.83% average spread in volumes for a Jones polynomial intrinsic mitigation against overfitting
- Same applies to 1,701,913 hyperbolic knots up to 16 crossings (database compiled from **Knot Atlas** and **SnapPy**)

Result

$$v_i = f(J_i) + \text{small corrections}$$

Neural network does better than more refined topological invariants

Beyond the volume conjecture in Chern–Simons

Simons

Simons Jones polynomial (quantum) ←→ volume (classical)

Failed experiments (e.g., learning Chern-Simons invariant) also teach us something — maybe about the need for underlying homology theory

$$\lim_{n \to \infty} \frac{2\pi \log J_n(K; e^{2\pi i/n})}{n} = \operatorname{Vol}(S^3 \setminus K) + 2\pi^2 i \operatorname{CS}(S^3 \setminus K)$$

cf. Calabi–Yau Hodge numbers, line bundle cohomology, etc.

Result

$$v_i = f(J_i) + \text{small corrections}$$

• <u>Universal Approximation Theorem:</u> feedforward neural network, sigmoid activation function, single hidden layer with finite number of neurons can approximate continuous functions on compact subsets of \mathbb{R}^n

Cybenko (1989) Hornik (1991)

- Surprise here is simplicity of architecture that does the job
- Ours is in fact the best result in this direction
- We want a **not** machine learning knot result, however

Entr'acte

$$v_i = f(J_i) + \text{small corrections}$$

We seek to reverse engineer the neural network to obtain an analytic expression for the volume as a function of the Jones polynomial

To interpret the formula, we use machinery of analytically continued Chern–Simons theory

Towards the Volume Conjecture

The volume conjecture:

$$\lim_{n \to \infty} \frac{2\pi \log |J_n(K; \omega_n)|}{n} = \operatorname{Vol}(S^3 \setminus K)$$

• 11,921 colored Jones polynomials at n = 3

t-SNE

Volume is learnable from coefficients

Chern-Simons invariant probably is not

$$\lim_{n \to \infty} \frac{2\pi \log J_n(K; \omega_n)}{n}$$

$$= \operatorname{Vol}(S^3 \setminus K) + 2\pi^2 i \operatorname{CS}(S^3 \setminus K)$$

No Degrees Needed

- Suppose we drop the degrees and provide only the coefficients; Jones polynomial is no longer recoverable from the input vector
- Results are unchanged!

<u>N.B.</u>: we have switched to **Python 3** using **GPU-Tensorflow** with **Keras** wrapper two hidden layers, 100 neurons/layer, ReLu activation, mean squared loss, **Adam** optimizer

Jones Evaluations

- Physics in Chern–Simons theory that leads to volume conjecture may also be responsible for information in $J_2(K;q)$
- Consider evaluations of Jones polynomial at roots of unity
- In particular, fix $r \in \mathbb{Z}$ and evaluate $j_p^r := J_2(K; e^{2\pi i p/(r+2)})$
- The input vector

$$\mathbf{v}_{\text{in}} = (\text{Re}(j_0^r), \text{Im}(j_0^r), \dots, \text{Re}(j_{\lfloor (r+2)/2 \rfloor}^r), \text{Im}(j_{\lfloor (r+2)/2 \rfloor}^r))$$

does not degrade neural network performance

• In fact, we only need to feed in the magnitudes: $\mathbf{v}_{\text{in}} = (|j_0^r|, \dots, |j_{\lfloor (r+2)/2 \rfloor}|)$ Consistent with degrees not mattering

Layer-wise Relevance Propagation

 To determine which inputs carry the most weight, propagate backward starting from output layer employing a conservation property

Montavon et al. (2019)

Compute relevance score for a neuron using activations, weights, and biases

$$R_{j}^{m-1} = \sum_{k} \frac{a_{j}^{m-1} W_{jk}^{m} + b_{k}^{m}}{\sum_{l} a_{l}^{m-1} W_{lk}^{m} + b_{k}^{m}} R_{k}^{m} \quad , \qquad \sum_{k} R_{k}^{m} = 1$$

$$j^{\text{th}} \text{ neuron in layer } m-1$$

Layer-wise Relevance Propagation

- Each column is a single input corresponding to evaluations of the Jones polynomial at phases $e^{\frac{2\pi ip}{r+2}}$, $0 \le 2p \le r+2$, $p \in \mathbb{Z}$
- Ten different knots
- We show the relevances (red is most relevant) and notice that the same input features light up

Relevant Phases

r	Error	Relevant roots	Fractional levels	Error (relevant roots)
3	3.48%	$e^{4\pi i/5}$	$\frac{1}{2}$	3.8%
4	6.66%	-1	0	6.78%
5	3.48%	$e^{6\pi i/7}$	$\frac{1}{3}$	3.38%
6	2.94%	$e^{3\pi i/4}, -1$	$\frac{2}{3}$, 0	3%
7	5.37%	$e^{8\pi i/9}$	$\frac{1}{4}$	5.32%
8	2.50%	$e^{3\pi i/5}, e^{4\pi i/5}, -1$	$\frac{4}{3}, \frac{1}{2}, 0$	2.5%
9	2.74%	$e^{8\pi i/11}, e^{10\pi i/11}$	$\frac{3}{4}, \frac{1}{5}$	2.85%
10	3.51%	$e^{2\pi i/3}, e^{5\pi i/6}, -1$	$1, \frac{2}{5}, 0$	4.39%
11	2.51%	$e^{8\pi i/13}, e^{10\pi i/13}, e^{12\pi i/13}$	$\frac{5}{4}, \frac{3}{5}, \frac{1}{6}$	2.44%
12	2.39%	$e^{5\pi i/7}, e^{6\pi i/7}, -1$	$\frac{4}{5}, \frac{1}{3}, 0$	2.75%
13	2.52%	$e^{2\pi i/3}, e^{4\pi i/5}, e^{14\pi i/15}$	$1, \frac{1}{2}, \frac{1}{7}$	2.43%
14	2.58%	$e^{3\pi i/4}, e^{7\pi i/8}, -1$	$\frac{2}{3}, \frac{2}{7}, 0$	2.55%
15	2.38%	$e^{12\pi i/17}, e^{14\pi i/17}, e^{16\pi i/17}$	$\frac{5}{6}, \frac{3}{7}, \frac{1}{8}$	2.4%
16	2.57%	$e^{2\pi i/3}, e^{7\pi i/9}, e^{8\pi i/9}, -1$	$1, \frac{4}{7}, \frac{1}{4}, 0$	2.45%
17	2.65%	$e^{14\pi i/19}, e^{16\pi i/19}, e^{18\pi i/19},$	$\frac{5}{7}, \frac{3}{8}, \frac{1}{9}$	2.46%
18	2.49%	$e^{4\pi i/5}, e^{9\pi i/10}, -1$	$\frac{1}{2}, \frac{2}{9}, 0$	2.52%
19	2.45%	$e^{2\pi i/3}$, $e^{16\pi i/21}$, $e^{6\pi i/7}$, $e^{20\pi i/21}$	$1, \frac{5}{8}, \frac{1}{3}, \frac{1}{10}$	2.43%
20	2.79%	$e^{8\pi i/11}, e^{9\pi i/11}, e^{10\pi i/11}, -1$	$\frac{3}{4}, \frac{4}{9}, \frac{1}{5}, 0$	2.4%

$$e^{ix} = e^{\frac{2\pi i}{k+2}}$$

Phenomenological Function

• Parameters fixed via curve fitting routines in **Mathematica**

Phenomenological Function

$$V_{3/4}(S^3 \setminus K) = 6.20 \log(|J_2(K; e^{\frac{3\pi i}{4}})| + 6.77) - 0.94$$

2.86% error compared to 2.28% error for neural network corresponds to Chern–Simons level $k=\frac{2}{3}$

Parameters of fit robust as a function of crossing number

The Shape of Things

A Better Formula

- Our reverse engineered function gave 2.86% error compared to 2.28% error for neural network; the latter is essentially intrinsic
- Can we do better with a formula? If so, how much better?
- Define a new error measure

$$\sigma = \frac{\text{variance of (actual volume - predicted volume)}}{\text{variance of volumes in dataset}}$$

[suggested to us in correspondence with Fischbacher, Münkler] σ -measure is shift/rescaling invariant

Can ask what fraction of variance is left unexplained

A Better Formula

 $\sigma = \frac{\text{variance of (actual volume - predicted volume)}}{\text{variance of volumes in dataset}}$

• By this measure, the neural network gives $\sigma = 0.033$ while our functional approximation gives $\sigma = 0.068$

- If we just assign the average volume to every knot in the dataset, $\sigma=1$; this corresponds to plateau
- There is room for improvement, but it is remarkable that a function with only three fit parameters works so well

Some Philosophy

The Future

• Machine learning identifies associations

• Want to convert this to analytics — *i.e.*, how does the machine learn?

• What problems in physics and mathematics are machine learnable?

• Can a machine do interesting science?

Stockfish/Sesse

- Carlsen-Caruana, Game 6, World Chess Championship 2018
- Black to move and mate in 36

Stockfish/Sesse

- Carlsen-Caruana, Game 6, World Chess Championship 2018
- Black to move and mate in 36

AlphaZero

- Trained to play Go via self play and it crushes all human players
- Invents new jōseki

Challenge

- How does a black box learn semantics without knowing syntax?
 - Generally unpublished failed experiments indicate what doesn't work
 - Knowing that there are approximate functions can we find analytic expressions by opening the black box?

- Can artificial intelligence do interesting research?
 - cf. new jōseki in go

AlphaGo Zero (2017)

— Proofs in real analysis

Ganesalingam, Gowers (2013)

— Proof assistants

Voevodsky (2014)

hep-th

- Use machine learning to classify papers into **arXiv** categories
- 65% success at exact subject, 87% success at formal vs. phenomenology
- Mapping words to vectors contextually, we discover syntactic identities

$$Paris - France + Italy = Rome$$

$$king - man + woman = queen$$

hep-th

- Use machine learning to classify papers into **arXiv** categories
- 65% success at exact subject, 87% success at formal vs. phenomenology
- Mapping words to vectors contextually, we discover syntactic identities

```
Paris – France + Italy = Rome

king - man + woman = queen
```

• An idea generating machine for **hep-th**:

```
symmetry + black \ hole = Killing
symmetry + algebra = group
black \ hole + QCD = plasma
spacetime + inflation = cosmological \ constant
string \ theory + Calabi-Yau = M-theory + G_2
```

THANK YOU!