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T'he Beginning




Fundamental Questions

How did the Universe begin?
Why 1s the world the way 1t 1s?
Could it have been some other way?

What 1s the fundamental explanation for space, time, and
matter?



How We Do Physics

® Interrogate a theory at its limits and test 1t against other
theories

® Investigate the tensions

A gedankenexperiment

Turn on the headlight of your bicycle
Suppose you bicycle faster than light

What do you see?

This thought experiment brings
(Galileo and Maxwell into tension




Special Relativity

® Livery observer measures the same speed of light

® ‘|'he Universe has a speed limit

SPEED
LIMIT
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299792458 m /s




Special Relativity

® Livery observer measures the same speed of light

® '|'he Universe has a speed hmit

| OBEY THE SPEE LIMIT?

KO MATTER HOW STUPID THEY ARE




T'heories Beget 'I'heories

® By testing electromagnetism against (Galilean mechanics, we
arrive at the special theory of relativity

AAST L1GHT cone




T'heories Beget 'I'heories

® By testing electromagnetism against (Galilean mechanics, we
arrive at the special theory of relativity

® |.et’s continue on this path

AAST L1GHT cone

General Relativity

Galilean Mechanics Newtonian Mechanics



General Relativity

Observed l  Another gedankenexperiment
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Tension between Newton
and Einstein

Image: Dave Jarvis

Force of gravity 1s geometry

Verified from microns to cosmic scales

Image: ESA/NASA (HST)



T'heory Space

Quantum Field Theory

General Relativity

Galilean Mechanics Newtonian Mechanics



Quantum Field Theory

® A field has a value at every point in spacetime

® Particles are local excitations of these fields

® 'lo define a quantum field theory, we must specity the fields and
how they interact

® lilectrons and positrons interact by exchanging photons, for example



Quantum Field Theory

® lFundamental forces are described by quantum field theory

® Standard Model
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strong force
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One Theory of Physics

® (Gravity 1s a response to curvature, but we experience this as a force
® Matter couples to geometry via mass

® What happens it we treat geometry as a quantum field?




One Theory of Physics

® (Gravity 1s a response to curvature, but we experience this as a force
® Matter couples to geometry via mass

® What happens it we treat geometry as a quantum field?
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What Went Wrong?

® (eneral relativity explains the dynamical response of geometry to the
presence of matter or energy and conversely the dynamical response
of matter to the curvature of spacetime

® In a quantum Universe, things fluctuate due to the uncertainty principle

® Because spacetime 1tselt fluctuates at the quantum level,
one of the central assumptions of general relativity, that
geometry 1s smooth, breaks down

® (uantum field theory is not the organizing principle

Image: Brian Greene



A New Hope
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Bronstein’s Cube
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Bronstein’s Cube

FIELDS INTERACT

VIA GAUGE FORCES

Newtonian
Quantum Gravity

PARTICLES ARE
FIELD EXCITATIONS
h
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Q| =

ENERGY COUPLES
TO GEOMETRY

SPACETIME 1S
DYNAMICAL




String T'heory

Gravity as a QFT Gravity from String Theory
INAANAN
INAANN]
These are infinite These are finite
These are four dimensional These are ten dimensional

| To prove the consistency of string theory we

- 1
h kable f: h -
use the remarkable fact that § n— -7

n=1

o XH:.:Y¥ s M

Sigma model on the string worldsheet gives general relativity



String T'heory

d=11 SUGRA <

. Heterotic _
> Spin(32)/22 Heterotic E8 X E8

orbifold by Q

orbifold by QR

String theory 1s in fact a web of interconnected theories in ten (or
eleven or twelve) dimensions

We experience only four dimensions. So how do we proceed?



'1'he Forces of Nature

® (Gravitational interactions described by Einstein

G =R, —

® Standard Model
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'1'he Forces of Nature

® (Gravitational interactions described by Einstein

1 87TGN
Guv == Ry — §gWR + Aguw = A L

® Non-gravitational interactions are not encoded as geometry

Theorem [Coleman—Mandula]: symmetry group in 4 dimensions 1s Poincaré x internal



'1'he Forces of Nature

Gravitational interactions described by Einstein

1 87TGN
Guv = Ry — §gWR + Mg = A L

Non-gravitational interactions are not encoded as geometry

Theorem [Coleman—Mandula]: symmetry group in 4 dimensions is Poincaré x internal

Clever loophole: internal symmetries may arise from higher dimensional
geometry

Kaluza—Klein: 5d Einstein equations give 4d Einstein + Maxwell equations



Geometric Engineering

Higher dimensional objects in string theory (branes) on which QFTs live

'Ien dimensional theory 1s consistent

Ansatz for the geometry 1s Mig = RS % CYj

Properties of CGalabi—Yau determine physics in four dimensions

Example: N, = 5 x| in simplest heterotic compactification models

Candelas, Horowitz, Strominger, Witten (1985)
Greene, Kirklin, Miron, Ross (1986)




Geometric Engineering

Higher dimensional objects in string theory (branes) on which QFTs live

'len dimensional theory 1s consistent

Ansatz for the geometry 1s Mig = MS X CY3
dSy

Properties of Calabi—Yau determine physics in four dimensions

Example: N, = 5 x| in simplest heterotic compactification models

Candelas, Horowitz, Strominger, Witten (1985)
Greene, Kirklin, Miron, Ross (1986)




'1he Real World

String theory supplies a framework for quantum gravity

We are beginning to understand black holes and holography

String theory 1s also an organizing principle for mathematics

Finding our universe among the myriad of possible consistent realizations of
a four dimensional low-energy limit of string theory 1s the vacuum
selection problem

Most vacua are false in that they do not resemble Nature at all

Among the landscape of possibilities, we do not have even one solution that
reproduces all the particle physics and cosmology we know



'1'’he Unreal World

® 'T'he objective 1s to obtain the real world from a string compactification

® We would happily settle for a modestly unreal world

N =1 supersymmetry in 4 dimensions

G=SU3)exSU2)L, xU(1)y

Matter in chiral representations of G :

(37 2)%7 (§7 1)—§7 (gv 1)%7 (17 2)::%7 (17 1)17 (17 1)0

Superpotential W O A% ¢) le‘;g

Three copies of matter such that A"/ not identical

Consistent with cosmology




'1'’he Unreal World

® 'T'he objective 1s to obtain the real world from a string compactification

® We would happily settle for a modestly unreal world

N =1 supersymmetry in 4 dimensions

Q) ~ A+ 5)

No experimental evidence so far!



'1'’he Unreal World

® 'T'he objective 1s to obtain the real world from a string compactification

® We would happily settle for a modestly unreal world

N =1 supersymmetry in 4 dimensions

Because 1t 1s Ricci flat, the
Calabr—Yau geometry ensures
4d supersymmetry

Use topological and geometric
features of the CGalabi—Yau to
recover aspects of the real world




PrepicTING A CALABI~YAU'S

T oPOLOGICAL INVARIANTS



Calabi—Yau

Mee (2013)
w* +zt oyt 42t =0C P



There 1s a now.

Calabi—Yau

Mee (2012)
w4+ 0P 42y 22 =0cC P

here vanishing holomorphic 1n-form

The canonical |

bundle 1s trivial

There is a Kahler metric with holonomy in SU (n)



Reflexive Polytopes

® Starting from a reflexive polytope, one can build a toric Galabi—Yau via
methods of Batyrev, Borisov

convex hull of finitely many lattice points

/ there 1s a single interior lattice point



Reflexive Polytopes Catalogued

® Starting from a reflexive polytope, one can build a toric Galabi—Yau via

methods of Batyrev, Borisov

® Kreuzer—Skarke obtained 473,800,776 reflexive polytopes that yield toric
Calabi—Yau threefolds with 30,108 unique pairs of Hodge numbers
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e Distribution of polytopes exhibits
mirror symmetry



Reflexive Polytopes Catalogued

® Starting from a reflexive polytope, one can build a toric Galabi—Yau via
methods of Batyrev, Borisov

® Kreuzer—Skarke obtained 473,800,776 reflexive polytopes that yield toric
Calabi—Yau threefolds with 30,108 unique pairs of Hodge numbers

e Distribution of polytopes exhibits
MmIrror symmetry

"N ,q ) H 1
ﬂu‘nqw' 1) mt iy .*N"',."‘

® 'The peak of the distribution is at

Wit 4 bt (Rt hY?) = (27,27)

There are 910,113 such polytopes

® Are there patterns in how the
> Ll L2 topological invariants are distributed?




Torus

Flat, but has non-trivial homotopy

There are non-contractible cycles

N

.';
a—cycle/ 4 oy=Imz
_ R g
T = R e
T A= Rl R2 sin 0

Kahler parameter: area A size

1 -

=R
complex structure parameter: T shape L €z

ds* = Ridz? + Ridy® + 2R, R; cos Odz dy



Moduli ()f CYz

® (Geometrical moduli enumerated by number of embedded two-spheres and

three-spheres
h??9 = dim HP1

1 bo
— d; ko _ p,q
0 0 b b =dim H* = » " h
0 hl,l 0 b p+q=k
1 ht? h%! 1 b3 pP 4 = P (complex conjugation)
2,2
0 h 0 b4 hP4 = p*~P"—9  (Poincaré duality)
0 0 b5
1 b6 X — Z(_l)ZH'CIhP,q
p,q
b
ht? = 53 — 1 complex structure moduli, counts the number of three-cycles

ht! =b, Kihler moduli, counts the number of two-cycles and four-cycles
1
X = 2(h1’1 — hl’z) Euler characteristic, N, = §lx|

® Mirror symmetry says that we can rotate the Hodge diamond by 7/2
and get a new Calabi—Yau with p'! & p12



3d Plots of Polytope Data
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Patterns in CY Distributions
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From Polytopes to Geometries

0-simplex 1-simplex 2-simplex 3-simplex

® A triangulation of P is a partition into simplices such that:

the union of all simplices is P

the intersection of any pair 1s a (possibly empty) common face

® [rom triangulation, we construct the Stanley—Reisner ring

® Unique rings correspond to different Calabi—Yau geometries

® lor each, we have topological data, intersection form, Kahler cone



b

M

d

Example: S

M

d

a

G

d

In = (ad, bce)

KA — K[a,b,c,d,e]/[A

b

minimal non-faces

Stanley—Reisner ring

Homeomorphic to two-sphere




From Polytopes to Geometries

Every triangulation of a reflexive polytope can yield a Galabi—Yau

We do not know how many toric Calabi—Yau geometries there are

Ditterent triangulations of the same polytope are expected, in general, to
orve different Calabi—Yau manifolds

In principle, triangulations of ditferent polytopes can give the same Calabi—
Yau manifold

The Calabi—Yau inherits topological invariants from the polytope

16 polytopes 1n R? orve rise to elliptic curves (Galabi—Yau onetfolds)
4319 polytopes in R? otve rise to K3 (Calabi—Yau twofolds)

473800776 polytopes in R* orve rise to at least 30108 Calabi—Yau threetolds



A Calabi—Yau Database

© 5 1411.1218.pdf x | & Toric CY Database

C @ rossealtman.com

Toric Calabi-Yau Database

Q% Q09

Apps Y Bookmarks M Gmail [ Searches & Images [!Bing =1 News [ Science @:arxiv ghep—th @:hep—me

Vishnu

6 @ O G

INSPIRE | INSPIRE-ME aMaps

This database is based on arXiv:1411.1418. Please cite us.

Constructed with support from the National Science Foundation under grant NSF/CCF-1048082, EAGER: CiC: A String Cartography.

B C—

Enter search parameters:

Select Polytope Properties: Select CY Geometry Properties:

Select Triangulation-Specific Properties:

Format: Integers

Polytope ID #: _

Format: Integers

nuz: [

z1: [

Ealer #: [

Favorable”: [ N
pm—p— |

Format: Integers

—
Geometry # (within polytope): _
Triangulation # (within geometry): _

Triangulation # (within polytope): [
Format: Integers

# of Geometries (within polytope): [ |
# of Triangulations (within geometry): _
# of Triangulations (within polytope): [ | NN

Format: Integers

# of Newton Polytope Vertices: _
# of Newton Polytope Points: _
# of Dual Polytope Vertices: -

# of Dual Polytope Points: ||

Format: {{...}.{..},--.{.-}}

(Mathematica matrix)

Resolved) Weight Matrix: [ | NN

Newton Polytope Vertex Matrix: || |

Dual Polytope (Resolved) Vertex Matrix: || [ N
CY 20d Chern Numbers: || | | | |} JIR

Intersection Polynomial or Tensor: _

m Polytope ID #
m Polytope # m # of Triangulations (within geometry)
mHI11 ® CY 2nd Chemn Class (Basis)

= H21 ® CY 2nd Chern Numbers

m Euler # m CY Intersection Polynomial (Basis)
m Favorable? m CY Intersection Tensor (Basis)

® Geometry # (within polytope)

m # of Newton Polytope Vertices ® CY Mori Cone Matrix

m # of Newton Polytope Points m CY Kahler Cone Matrix
m Newton Polytope Vertex Matrix m Toric Swiss Cheese Solutions
m # of Dual Polytope Vertices
m # of Dual Polytope Points

® Dual Polytope Vertex Matrix

m Explicit Swiss Cheese Solutions

® Dual Polytope Resolved Vertex Matrix

m Weight Matrix

® Resolved Weight Matrix

m Toric to Basis Divisor Transformation Matrix
® Basis from Toric Divisors

m Basis to Toric Divisor Transformation Matrix
m Toric from Basis Divisors

® Fundamental Group

m # of Geometries (within polytope)

m # of Triangulations (within polytope)

® Triangulation # (within geometry)

m Triangulation # (within polytope)

m Triangulation

® Stanley-Reisner Ideal

B Ambient Chern Classes (Toric)

B Ambient Chern Classes (Basis)

u CY 2nd Chern Class (Toric)

m CY 3rd Chern Class (Toric)

® CY 3rd Chern Class (Basis)

B Ambient Intersection Polynomial (Toric)
B Ambient Intersection Tensor (Toric)

B Ambient Intersection Polynomial (Basis)
B Ambient Intersection Tensor (Basis)

m CY Intersection Polynomial (Toric)

m CY Intersection Tensor (Toric)

® Phase Mori Cone Matrix

® Phase Kahler Cone Matrix

(0 = Unconstrained)

Couns onty: D) ‘ v |

Polytopes s

https://rossealtman.com

Altman, Gray, He, V], Nelson (2014)



CICYs

® /ero locus of a set of homogeneous polynomials over combined set of
coordinates of projective spaces

_ _ complete intersection
Pr fgr o g ) Z e = R =3 eefold
X = Lo
n | : r=n,.4+1, Vre{l, ... ,/(
C1 —

configuration matrix

e /{ equations of multi-degree qg € L>p embeddedin P x ... x P

41—-1=3
b=4+1

e Example: quintic P*(5)_sq

® (Other examples:

P°(3,3) 144 5 P°(4,2) 176 , PY(3,2,2) 144, P7(2,2,2,2) 198



CICYs

afy — 0
. . a W WpaW
e '|1an—Yau manitfold: Pi 3 0 1 = b2,z ZW’Y 0
PP\ 0 3 1 p
—18 c*Pwa 2 = 0
ptt =14, h'* =23
freely acting /,3 quotient gives manifold with X = —0
central to early string phenomenology
® ‘Iranspose 1s Schon’s manifold, also Calabi—Yau
P~ 3 0
P~ 0 3
P\ 1 1
=0 %-5-(5—5%:—200
ptt =ht? =19

(4% 2)-(6—4°—-2% =-176

Wl W]

® (lan compute X from configuration matrix (3% 3)-(6—3°—3%) = —144



CICYs

® We have: 7890 configuration matrices Candelas, He, Hiibsch, Lutken, Lynker,

Schimmrigk, Berglund (1986-1990)
1x1 to 12 x 15 with ¢, € |0,5]
266 distinct Hodge pairs 0 < A1 <19, 0 < hb? < 101
70 distinct Fuler characters X € [_2007 O]

195 have freely acting symmetries, 37 difterent finite groups
from Zo to Zig X Hg Braun (2010)

® By comparison, for fourfolds, there are 921497 CICYs
4htt — 20 + 4R — W22 + 44 =0

Most ot these are elliptically fibered Gray, Haupt, Lukas (2013)



Hodge Number

CICY Hodge Numbers
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0 1000 2000 3000 4000 5000 6000 7000 8000 -960 =720 —480 -240 0 240 480 720 960
Manifold hl’l . h1’2



Feedtorward Neural Networks

Input vector

L1
w1
To Wo o(wir1 + woxs + w3xs + b)
w3
s Neuron
1 21 2 12
(YY ]
(YY)
° °
° °
P ° °
°
°

Schematic representation of feedforward neural network. The top figure denotes the perceptron (a single neuron),
the bottom, the multiple neurons and multiple layers of the neural network.



Support Vector Machines

Linear Kernel, linearly separable data Gaussian Kernel, non-linearly separable data

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

-0.6

SVM separation boundary calculated using our cvxopt implementation with a randomly generated data set.



Genetic Algorithms

Create new population by
o _ Evaluate score for each
Generate inital populatlon Se|ecti0n’ breeding and
entry in population

mutation

Used to fix hyperparameters (e.g, number of hidden layers and neurons in them, activation functions, learning
rates and dropout) in neural network.



Machine Learning h”

. 1,1 1,2 : : :
Since we know X = 2(h™" — h™%) from intersection matrix, we choose to
machine learn A" € [0, 19]

Previous efforts discriminated large and small htl

Use Neural Network classifier/regressor and SVM regressor

Hodge Number - Validation Learning Curves

0.9 -
0.8 -
> 0.7
o
>
O
9
<
0.6
0.5 A e
¢ SVM Regressor Validation Accuracy
¢ Neural Net Regressor, Validation Accuracy
Neural Net Classifier, Validation Accuracy
0.4 -

0.2 0.4 0.6 0.8 .
Fraction of data used for training Bull, He, V], Mishra (2018)



Machine Learning h”

Accuracy RMS R? WLB WUB
SVM Reg 0.70 4 0.02 0.53+ 0.06 0.78 £ 0.08 0.642 0.697
NN Reg 0.78 £ 0.02 046 £0.05 0.724+0.06 0.742 0.791
NN Class | 0.88 £+ 0.02 - - 0.847 0.886
1/2 pred\2
1 N pred 2 . Zz (y'l yz )
RMS := —Z — ;)? R :=1-— 5
NS 2.i(Yi — 9)

W+
Wilson upper/lower bounds
(WUB/WLB)
Yi
Y
pred
2z
n

2

1+ 2

n

1/2
p"‘ an: % p(l_p)—l— ZQ /
n 4n?

actual value

average value

predicted value

probability of successtul prediction
probit

number of samples

Bull, He, V], Mishra (2018)



NN classifier

NN regressor

SVM regressor

Machine Learning h”
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h11 frequency of validation set (20.0% of full dataset)
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The Good

The Bad

The Possibly
Beautiful

Quo Vadis?

During the last 10-15 years, several international collaborations
have computed geometrical and physical quantities and compiled
them 1n vast databases that partially describe the string landscape

Computations are hard, especially for a comprehensive treatment:
dual cone algorithm (exponential), triangulation (exponential),
Grobner basis (double exponential), how to construct stable bundles
over Galabi—Yau manifolds constructed from halt a billion polytopes?

Borrow techniques from “Big Data”



Machine Learning CICY's

® Subsequent work on topology of CICYs

Bull, He, VJ, Mishra (2019)

Erbin, Finotello (2020)

® Metrics on CICYs

— not known analytically

— needed, e.g, to compute mass of electron
Ashmore, Ovrut, He (2019)
Anderson, Gerdes, Gray, Krippendorf, Raghuram, Riihle (2020)
Douglas, Lakshminarasimhan, Q1 (2020)

V], Mayorga Penia, Mishra (2020)



Calabi—Yau 1’ hreetfolds

® Reid’s fantasy: space of Galabi—Yaus 1s connected






Dramatis Personae

Knot: S* C 5% ;g © & ® @ @

unknot

trefoil

31

figure-eight
4y

three-twist

92

cinquetoil

91



Dramatis Personae
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Thistlethwaite unknot O




Dramatis Personae

wses. Q& @

v () OO =aH (=) 00)

Jones polynomial: J(K; q) = (_q% ) 0O
w(K') = overhand — underhand

J(O;q) =1

Jones (1985)

topological invariant: independent of how the knot 1s drawn

Question: how to calculate these?

Answer: quantum field theory!




Chern—Simons Theory

® What 1s the simplest non-trivial quantum field theory?

— Chern—Simons theory in three dimensions

® locus on topology instead of geometry

genus 0 genus 1



Dramatis Personae

® &

v () OO =aH (=) 00)

<O> w(K') = overhand — underhand

KnOt: Sl C SS ;e

Jones polynomial: J(K; q) = (_q% )

vev of Wilson loop operator along K in
for SU(2) Chern—Simons on S 3 Wionee (1989)

Jo(4139) =q > —q ' +1—q+q*, g=er

Hyperbolic volume: volume of S*\ K is another knot invariant

computed from tetrahedral decomposition of knot complement

Thurston (1978)
Mostow (1968)



Dramatis Personae

27 log | Jn (K; wy)|

. . Kashaev ( )
Volume conjecture:  lim = Vol(S* \ K) Murakans % 2 (2001
- n— 0O n Gukov (2005)
2711
wn — e n

In fact, we take n, k — o0

LHS 5.5 o . . C
R Simplest hy.perbohc F_’ ﬂ\/
> non-two bridge knot, >
B has 18 crossings \/\\—/y§
)8

4.5 e
| 0%(0102
4

o ————— VOU(SP )\ Ky) = 3.474247 ...

50 100 150 200 250 !

Behavior 1s not monotonic!
Garoufalidis, Lan (2004)



Volume conjecture:

Khovanov homology:

Dramatis Personae

27 log | J (K5 wy))|

lim

n— oo n
271

Wy, = € n

Kashaev ( )
— VOI(Sg \ K) Murakgmihx ‘27 (;(9)?)’17.)

Gukov (2005)

a homology theory Hx whose graded Euler characteristic
1s J2(K; q); explains why coethicients are integers

Khovanov (2000)
Bar-Natan (2002)

log |Jo(K; —1)] , log(rank(H ) — 1) o< VOI(S*\ K)  wiviier Gooo

VVVVVV

log(rankH (K) — 1)

o PYRX
o 3R e

LI f.:.. L\

3 4 5 6 7 & 9 10 11 12 13 14 15 16 17
Volume(K)
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Dramatis Personae

in search

Of. an nerai network

Luigi Pirandello (1921)



Neural Network

Input Layer Output Layer

Hidden Layer 1 Hidden Layer 2
= 100

J 100 x 18 100 x 100 >

12000 hyperparameters

{1, ..., Jn} — {v1,..., 05}
J, €T

(T, T — 277

J e Te

Jones polynomials are represented as 18-vectors
Jx = (min, max, coeffs, 0, ..., 0)
'Iwo layer neural network in Mathematica

fo(Jx) = Y o (Wez'a(Wel - Jx + bp) +53>

a

Logistic sigmoids for the hidden layers

1 g
o(w) = 1 +e® : VJ, Kar, Parrikar (
e JUNSZA N , Kar, Parrikar (2019)




Neural Network

35

Volume

5p . :

ol | 2.45 4+ 0.10% error:
B 1 1 1 ] | ] | 1 1 | ] ] 1 1 | ] ] ] 1 | L

15 20 25 30

Prediction from Neural Network

trained on 10% of the 313,209 knots up to 15 crossings

VJ, Kar, Parrikar (2019)



Result

v; = f(J;) + small corrections

e J, does not uniquely identity a knot

e.qg., 41 and K11n19 have same Jones polynomial, different volumes

e 174,619 unique Jones polynomials

2.83% average spread in volumes for a Jones polynomial
Intrinsic mitigation against overfitting

e Same applies to 1,701,913 hyperbolic knots up to 16 crossings
(database compiled from Knot Atlas and SnapPy)

VJ, Kar, Parrikar (2019)



Result

v; = f(J;) + small corrections

Neural network does better than more refined topological invariants

weak coupling limit of
SL(2,C) Chern—Simons

Beyond the volume conjecture in Chern—Simons o
strong coupling limit of

Jones polynomial (quantum) <—— volume (classical) SU(2)

Failed experiments (e.g, learning Chern—Simons invariant) also teach us
something — maybe about the need for underlying homology theory

2w log J,(K;e¥™i/my 5 5. 5 ¢f Calabi—Yau Hodge numbers,
m n = VOl(S™\ K) + 27 CS(57A K) line bundle cohomology, etc.

VJ, Kar, Parrikar (2019)



Result

v; = f(J;) + small corrections

Universal Approximation ''heorem: feedforward neural network, sigmoid
activation function, single hidden layer with finite number of neurons can

approximate continuous functions on compact subsets of R"

Cybenko (1989)
Hornik (1991)

Surprise here 13 simplicity of architecture that does the job

Ouurs 1s 1n fact the best result 1n this direction

We want a not machine learning knot result, however

VJ, Kar, Parrikar (2019)



Entr’acte

v; = f(J;) + small corrections

We seek to reverse engineer the neural network
to obtain an analytic expression for
the volume as a function of the Jones polynomial

To interpret the formula, we use machinery of
analytically continued Chern-Simons theory



Towards the Volume Conjecture

® ‘'|'he volume conjecture:

-600

-400

21 log | Jn (K wy)|

lim
n—oo

Lﬂﬂf(é

20000

15000

................

n

62m‘/3)‘

sttt

SR

200

o 11,921 colored Jones polynomials at n = 3

= Vol(S° \ K)

600

Jo (K5 —1)

Craven, VJ, Kar (2020)



150 A

100 A

50 A

—100 A

-150 -100 -50 0 50 100 150

0 5 10 15 20 25 30
Volumes

Volume 1s learnable from coeflicients

Chern—Simons invariant probably 1s not

lim
n— o0

21 log J,, (K wy,)

n

= Vol(S° \ K)
+27%i CS(S° \ K)

0.1 0.0
Chern Simons Invariants

Craven, VJ, Kar (2020)



No Degrees Needed

® Suppose we drop the degrees and provide only the coethicients; Jones
polynomial 1s no longer recoverable from the mput vector

® Results are unchanged!

Neural network predictions - 2.28% relative error

102

Hyperbolic volume

- 101

10°

5 10 15 20 25 30
Prediction from neural network

N.B.: we have switched to Python & using GPU-Tensorflow with Keras wrapper

two hidden layers, 100 neurons/layer, ReLLu activation, mean squared loss, Adam optimizer

Craven, VJ, Kar (2020)



Jones Evaluations

Physics in Chern—Simons theory that leads to volume conjecture may also
be responsible for information in J5 (K q)

Consider evaluations of Jones polynomial at roots of unity

In particular, fix r € Z and evaluate j, := J2(K; e/ (r+2))

The input vector
vin = (Re(j0), Im(jg ) - - -, Re(J] 2y /21)s Im(J] (r42) 21))

does not degrade neural network performance

In fact, we only need to feed in the magnitudes: Vin = (lgols -5 1d 42y /2] 1)

Consistent with degrees not mattering . 09 Kar (2020)



Layer-wise Relevance Propagation

® 'To determine which inputs carry the most weight, propagate backward
starting from output layer employing a conservation property

O
Q =0

O - O

Q)
RN
At 7

FATAL

Montavon et al. (2019)

® (ompute relevance score for a neuron using activations, weights, and biases

m 1
W + b
R — L R Ry =1
D D

L l lk
77" neuron in layer m — 1




Layer-wise Relevance Propagation

r=4 r=>5 r==6 r=17

® Fach column 1s a single input corresponding to evaluations ot the Jones

2mip

polynomial at phases e7™+2 , 0<2p<r+2, peZ
® 'len different knots

® We show the relevances (red 1s most relevant) and notice that the same input
features light up

Craven, VJ, Kar (2020)



Relevant Phases

r | Error Relevant roots Fractional levels | Error (relevant roots)
3 | 3.48% edmi/s : 3.8%
4 | 6.66% ~1 0 6.78%
5 | 3.48% e/ 3 3.38%
6 | 2.94% 34, —1 2,0 3%
7 | 5.37% eBmi/9 1 5.32%
8 | 2.50% e3mi/5  eAmi/5 1 2, 4,0 2.5%
9 | 2.74% e87i/11  o10mi/11 3.1 2.85%
10 | 3.51% e2mi/3 5mif6 1 1, 2,0 4.39%
11 | 2.51% eBmi/13  o10mi/13  o12mi/13 2 31 2.44%
12 | 2.39% b7 bmi/T 1 110 2.75%
13 | 2.52% e2mi/3  eAmi/b  oldmi/15 1, 4,14 2.43%
14 | 2.58% e3m/4, eTmi/8 1 22,0 2.55%
15 | 2.38% e12m'/177 6147m'/177 o167 /17 %’ %7 % 2.4%
16 | 2.57% e2mi/3  Tmi/9  8mi/9 _q 1,2, %40 2.45%
17 | 2.65% 614m'/19’ 616m'/197 618777;/19, %, %, é 2 46%
18 | 2.49% emi/5  Imi/10 1 1, 2,0 2.52%
19 | 2.45% €2m'/37 616772'/217 667?2'/77 207 /21 1, g’ %7 1_1O 2.43%
20 | 2.79% | 8T/ /1L l0mi/1L - _q 2 5, 3,0 2.4%
it — o255

Craven, VJ, Kar (2020)



Phenomenological Function

Vi (K) = 6.2010g(6.77 + | Jo(K ;exp(3mi/4))|) — 0.94

10°
371
4
102
10!
5 -

2.86% error |
| | | ! | | | l(](J

ol 100 150 200 250 300 350

| Jo( K;exp(3mi/4))]

® Parameters fixed via curve fitting routines in Mathematica

Craven, VJ, Kar (2020)



Phenomenological Function

371

<)

Vs/4(S®\ K) = 6.20log(|Jo(K;e i )| +6.77) — 0.94

2.86% error compared to 2.28% error for neural network

2
corresponds to Chern—Simons level k& = 3
Parameters of fit robust as a function of crossing number
10 S
[
10 A 9
N e
0 8
..
v —10
o 6
= -20
5-
-30 4 A -
b
c 3 1
-40
1b 1'1 1'2 1'3 1'4 1'5 1'6 lb 111 1'2 1'3 114 1'5 1'6
Cross ing number ... Cross ing number

Craven, VJ, Kar (2020)



mean absolute error (%)

T'he Shape of "T'hings

k
100 20 10 5 2 1
1 1 1 1 1 1
12 -
10 1
- %
(j -
1 -
1 1 1 1
0 . e
X

Craven, VJ, Kar (2020)



A Better Formula

e Our reverse engineered function gave 2.86% error compared to

2.28% error for neural network; the latter is essentially intrinsic
e (an we do better with a formula? If so, how much better?

® Define a new error measure

variance ot (actual volume — predicted volume)

g —
variance of volumes in dataset

[suggested to us 1n correspondence with Fischbacher, Miinkler|

o -measure 1s shift/rescaling invariant

® (lan ask what fraction of variance 1s left unexplained



A Better Formula

variance of (actual volume — predicted volume)
0O —

variance of volumes in dataset

By this measure, the neural network gives 0 = 0.033

while our functional approximation gives o = (.008

If we just assign the average volume to every knot in the dataset, 0 = 1 ;
this corresponds to plateau

There 1s room for improvement, but 1t 1s remarkable that a function with
only three fit parameters works so well



Some Philosophy



'I'he Future

Machine learning identifies associations

Want to convert this to analytics — .e., how does the machine learn?

What problems in physics and mathematics are machine learnable?

Can a machine do interesting science?



Stockfish/Sesse

e (larlsen—Caruana, Game 6, World Chess Championship 2018

® Black to move and mate in 36



Stockfish/Sesse

e (larlsen—Caruana, Game 6, World Chess Championship 2018

® Black to move and mate in 36



AlphaZero

® ‘Irained to play Go wia self play and it crushes all human players

® Invents new joseki



Challenge

® How does a black box learn semantics without knowing syntax?

— Generally unpublished failed experiments indicate what doesn’t work

— Knowing that there are approximate functions can we find analytic
expressions by opening the black box?

e (an arttficial intelligence do interesting research?

— ¢f. new joseki 1n go AphaGo Zero (2017)
— Proofs 1n real analysis Ganesalingam, Gowers (2013)

— Proof assistants Vosvodsky (2014)



hep-th
® Use machine learning to classity papers into arXiv categories

® 65% success at exact subject, 87%o success at formal vs. phenomenology

® Mapping words to vectors contextually, we discover syntactic identities

Paris — France + Italy = Rome

king — man + woman = queen

He, VJ, Nelson (2018)



hep-th
® Use machine learning to classity papers into arXiv categories

® 65% success at exact subject, 87%o success at formal vs. phenomenology

® Mapping words to vectors contextually, we discover syntactic identities

Paris — France + Italy = Rome

king — man + woman = queen

® An idea generating machine for hep-th:

symmetry + black hole = Killing
symmetry + algebra = group
black hole + QCD = plasma

spacetime + inflation = cosmological constant

string theory + Calabi— Yau = M —theory + G5

He, VJ, Nelson (2018)
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