
Hierarchical Models for Insightful Machine Learning

Science Accelerator

Markus Kaiser

www.mrksr.de

3 February 2021

University of Cambridge, Siemens AG

https://mrksr.de


Real-world machine learning

Human-centered ML

• Confined systems

• (Seemingly) mild consequences

Examples: Games, Search, NLP

Scientific and Industrial ML

• Real-world interaction

• Safety and semantics are critical

Examples: Machine control, commissioning
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Properties of real-world ML

Uncertain models

Domain knowledge

Need for trust
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The basic ML algorithm

Empirical risk minimization

• Approximate the global true risk wrt. loss ℓ

R(𝑓 ) ≔ ∫ ℓ(𝑓 (𝐱), 𝐲) p(𝐱, 𝐲) d𝐱 d𝐲

with the local empirical risk in the available data

Remp(𝑓 ) ≔
1
𝑁

𝑁
∑
𝑖=1

ℓ(𝑓 (𝐱𝑖), 𝐲𝑖)

• Learning algorithm: Choose a hypothesis spaceℋ ⊆ ℱ and use

̂𝑓 ∈ argmin
𝑓 ∈ℋ

Remp(𝑓 )
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Generalization is necessary

Scientific and Industrial ML

As data is scarce, experts need to tell us how to generalize aggressively.
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Models are known to be imperfect

Human-centered ML

• When in doubt, collect more data

• Uncertainties are not so important
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Scientific and Industrial ML

• Need to make do with available data

• Uncertainties are critical
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Industry needs interpretability

Human-centered ML

• Inform or influence a person

• Understanding is secondary

My tree blog

Trees rock!
Prediction

Scientific and Industrial ML

• Create better or safer machines

• Understanding is key

Root Cause Analysis
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Carl’s slide

The Scientific Principle

Hypothesis

Experiment

Evidence

Data + Model
Compute︷︸︸︷→ Prediction

7
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Knowledge in ML models

Places to encode knowledge

Observations𝒟 Data selection, feature engineering, data augmentation

Hypothesis spaceℋ Choice ofmodel, architecture design

Loss function ℓ Choice of norm, regularization

Optimizationmin Choice of optimizer, initialization, parameter tuning

min ℓ 𝒟 ℋ Interpretability
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Lillgrund wind farm

8



Wind and wake propagation
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Real-world data

Wind Direction
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Real-world data

Wind Direction
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Modelling wind propagation

𝐮

Wind Fronts

Front Turbine
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Hypothesis: A Bayesian graphical model
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Hypothesis: A Bayesian graphical model

Time Alignment

Wind Fronts

Turbine Behaviour
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Posterior: Uncertain time alignment
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Comparing samples from the model
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Carl’s slide

The Scientific Principle

Hypothesis

Experiment

Evidence

Data + Model
Compute︷︸︸︷→ Prediction

7
15



Gas turbines for power production
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Data-Association model for gas turbines

Siemens gas turbine Combustion Dynamics

• Data from different operational regimes

• Robust inference for faulty sensors
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Multimodal data
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Graphical Model of DAGP

N

K

Mode models

Mode weights

Mode assignment
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The basic ML algorithm

Empirical risk minimization

• Approximate the global true risk wrt. loss ℓ

R(𝑓 ) ≔ ∫ ℓ(𝑓 (𝐱), 𝐲) p(𝐱, 𝐲) d𝐱 d𝐲

with the local empirical risk in the available data

Remp(𝑓 ) ≔
1
𝑁

𝑁
∑
𝑖=1

ℓ(𝑓 (𝐱𝑖), 𝐲𝑖)

• Learning algorithm: Choose a hypothesis spaceℋ ⊆ ℱ and use

̂𝑓 ∈ argmin
𝑓 ∈ℋ

Remp(𝑓 )
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Multimodal data
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Wet-Chicken Benchmark

waterfall

Dynamics Agent in a flowing river

Goal Get close to the waterfall

State (𝑥, 𝑦)-position in ℝ2

Action (𝑥, 𝑦)-movement in ℝ2
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Wet-Chicken Benchmark

waterfall

Action

waterfall waterfall

Flow

waterfall

waterfall

Turbulence

waterfall waterfall

Drop

waterfall
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Graphical Model of DAGP

Current state and action

Next state
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Graphical Model of DAGP
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Multimodal System Dynamics

p(Δ𝐱𝑡+1) = p(Δ𝐱𝑡+1 |drop) ⋅ p(drop)

+ p(Δ𝐱𝑡+1 |no drop) ⋅ p(no drop)
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Wet-Chicken Policy

0 2.5 5

0

2.5

5
waterfall

𝐲

𝐱

25



Summary

Scientific and industrial AI

• Models must stand up to scrutiny

• Knowledge is often hierarchical

• Enforce scientific plausibility

Subjectivity of models

• ML is great at explaining data

• But not all explanations are valid

• Beyond metrics, experts need to judge

Markus Kaiser — mrksr.de
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