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Bringing Together Physics, Pure Mathematics,
and Computer Science
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+ Three Connections @ Physics / ML Interface
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Institute for Artificial Intelligence

. Physics Meets ML !
and Fundamental Interactions (IAIFI) ysics leets Feel free to contact me
one of five new NSF Al research institutes, virtual seminar series at the interface, e-mail: jhh@neu.edu
this one at the interface with physics! MIT, “continuation” of 2019 meeting at Twitter: @jhhalverson
Northeastern, Harvard, Tufts. Microsoft Research. web: www.jhhalverson.com
ML for physics / math discoveries? Bi-weekly seminars from physicists ML for Math:
Can physics / math help ML? and CS, academia and industry. eg. "Learning to Unknot: 201016263
ML for Strings:

Colloquia begin in Spring! Sign up at www.physicsmeetsml.org. eg “Statistical pregdictions in String Theory

WWW.iaifi.OI’Q, Qlalfl news and Deep Generative Models”: 2001.00555



http://www.iaifi.org
https://twitter.com/iaifi_news
http://www.physicsmeetsml.org
mailto:jhh@neu.edu
http://www.jhhalverson.com

The Deep Learning Revolution: Supervised Learning

What? learn to predict outputs, given inputs.
test on unseen data, the “test set”

Many simpler algorithms.
Recently deep neural nets have taken over.

Right. image from a famous dataset, MNIST.
Goal: predict 0-9, given the image.

“The usual thing” people mean by deep learning,

and “the usual thing” people use in physics.
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The Deep Learning Revolution:

B50: Sicilian Defence
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B30: Sicilian Defence
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B40: Sicilian Defence
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C60: Ruy Lopez (Spanish Opening)
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B10: Caro-Kann Defence
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A05: Reti Opening

EAsWe s X 5%
Adrrarraa 1o

a %

12%

2} 6%
ABARARARA
Braude R Lk
a b cde f g h 0:00 2:00 4:00 6:00 8:00

2.c4 e6 d4 d5 De3 Le7 £14 0-0

Total games: w 242/353/5, b 48/533/19

Overall percentage: w 40.3/58.8/0.8, b 8.0/88.8/3.2

[Silver et al, 2019]

Reinforcement Learning

What? agent explores state space according
to policy, a state — action map. Receives
rewards, updates policy accordingly.

Left. AlphaZero learns Chess openings.
Crushes conventional program that crushes
the best humans. Watch AlphaGo on Netflix!

In physics / math, e.g.:
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Mean score

[J.H., Gukov, Ruehle, Sulkowski]
arXiv: 2010.16263 (appearing in Sept 20)

Mean score for TCKS

ﬁTCKS Reward

o TC Reward

0.0 0.5 1.0
Number of steps ~ x107

[J.H., Nelson, Ruehle]
arXiv: 1903.11616.
punctuated equilibria!



The Deep Learning Revolution: Generative Models

What? Learns to generate / fake / simulate data.

Idea: neural net maps learns to map noise N ~ P(N)
to draws from some target data distribution.

Right. Images generated with VQ-VAE?2.

In physics, e.g.:

Simulate GEANT4 ECAL simulator.  VOAE2 [Razavietal 209]

CaloGAN, [Paganini et al, 2018].

Simulate string theory EFTs, ALP kinetic terms. These “people” do not exist!
used Wasserstein GAN, [JH., Long, 2020] Generated by a neural network from noise.



ower and role of neural networks
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Supervised: Generative Models: Reinforcement:
NN is powerful function NN is powerful function that maps NN is powerful function that,
that predicts outputs (e.g. draws from noise distribution to draws e.g., picks intelligent

class labels), given input. from data distribution. state-dependent actions.



What are we to make of this?

seeing new directions, how does it fit with the way we normally think
about the natural sciences and physics specifically?



The Usual Story: Math and Physics belong together

calculus, Riemannian geometry, algebraic topology,
group theory, algebraic geometry etc. ..

Newtonian mechanics leads to calculus,
Chern-Simons observables for knot invariants,
Mirror symmetry of algebraic varieties,

Eugene Wigner

“The unreasonable effectiveness of mathematics
in the natural sciences”



But computer science is young!

e 1800s: Lovelace and Babbage lay foundations

e 1940s-50s: Turing et. al. develop theory e
of computation, major experimental breakthroughs.

e 1980s: personal computers take over. Accessibility!

how a group of

e 1990s-2000s: the internet and power grow.

hackers,
geniuses,
and geeks

e 2010s: deep learning breakthroughs. created the

digital revolution

o 2020s:7??

excellent biography of founders of CS



Computer science is still an infant

This is not an insult! It is exciting.

What will people say about this first 200 year period
in 500 or 1000 years?

How will it fit in?
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Towards a triangle of influence?
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& + many others

Towards a triangle of influence?

The NSF Al Institute
for Artificial Intelligence and
Fundamental Interactions (IAIFI)

one of five new NSF Al research institutes, this one
at the interface with physics!

MIT, Northeastern, Harvard, Tufts.

ML for physics / math discoveries?
Can physics / math help ML?

Colloquia begin February 4!
www.iaifi.org
@iaifi_news


http://www.iaifi.org
https://twitter.com/iaifi_news

Overlaps between large and diverse fields!

can only give you a glimpse of some possibilities.



Outline: Two Legs of the Triangle

Example 1: ML — Math
Knot theory is a beautiful subject in topology.

Can ML help us unknot?
Remarkably similar to natural language.

Example 2: Physics — ML
Neural networks are surprisingly like quantum field theory.

Can techniques from the latter help us understand the former?



Example 1: ML — Math

“Learning to Unknot”

[Gukov, J.H., Ruehle, Sulkowski] arXiv: 2010.16263
to appear in Machine Learning: Science and Technology

Related knots / ML works:
[Hughes] 1610.05744
[Jejjala, Kar, Parrikar] 1902.05547
[Craven, Jejjala, Kar] 2012.03995



Example 1: Outline

e Knots and Natural Language
e The Unknot Problem
e Decisions, Reformers, and Hard Knots

e Unknotting and Reinforcement



Knots and Natural Language

why are these two things related!?



Knots and Braids
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Artin Braid Group

Identity: Composition:
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Braid Equivalence

Braid Relation 1:

DEp -
D G G

0103 02 03 01 02

(i.e. some generators commute)

0;0; = 0;50; if li—j|>1

Braid Relation 2:

01 09 01 O2 01 02

(i.e. can rearrange braid)

0;0;4+10; = 04103041



Knot Equivalence

Markov Move 1: Conjugation

Markov Move 2: Stabilization

[ +1




The Upshot

Thought of as braids, knots are represented by words.

Knot equivalence becomes equivalences between different words.
How do we determine when two words (sentences) carry the same meaning?

These questions are the domain of natural language processing.



Natural Language Processing

Learning Semantics:

E embeds words into vector space.

e.g. E(king) - E(man) + E(woman) = E(queen)
Generative language models:

bold text: human-written prompt.
rest: generated by GPT-3 (OpenAl).

Below is a screenplay for a film-noir hard boiled detective story by Raymond Chandler

about the boy wizard Harry Potter:

“Harry Potter”
By Raymond Chandler

Harry Potter, Private Eye.

Scene: A small dingy office, early morning, furniture of the Salvation Army store variety. Sordid
atmosphere. Harry Potter, in ratty tweed suit, unpressed shirt, and unshined shoes, sits behind the
desk looking haggard, rumpled, and embittered. In one corner of the office a torn shade rattles at
the wind gusts outside. Harry has one long index finger on the butt of a .38 and he broods over a
photograph. The photograph shows a gorgeous blonde wearing an evening gown. She is holding
a cocktail in one hand and looking pensively at a cigarette in the other. A tear adorns her cheek.
Harry looks at her for a long moment, sighs, then puts his gun down and stands. He straightens
his clothes, scratches his head, then with more resolution turns around, picks up his pistol, and
leaves the office. He passes through the front room and looks out the dirty window. An old
woman is washing the sidewalk outside with a mop. A young man in a double breasted gray suit
is leaning against the building. Harry sighs again and goes out the door. He walks up to the

young man and without ceremony punches him in the jaw.



NLP in Our Context

Learn commutativity:

He's sometimes right = Sometimes he's right 0103 = 03071

The scientist eats the chicken # The chicken eats the scientists

Learn equivalences:

The scientists read the paper = The paper was read by the scientists
W = WON+1

—1

0102 760201



The Unknot Problem

a simple-to-state but difficult-to-solve tangling problem.



The Unknot Problem

@=0+C

Alexander Polynomial: 1 for unknot, converse is not true, + fast.
Jones Polynomial: 1 for unknot, converse not known to be true but is true for up to 24 crossings, but slow #P-hard.
Khovanov Homology: detects the unknot, but slow (fast would contradict #P-hard Jones).

Knot invariants?

No known fast invariant that detects the unknot.



Knot or not? A game for children
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point: dlfflculty increases with crossings.

olutions are presented left-to-right, top-to-bottom, witl an enoting non-trivial knots
and unknots, respectively. Fig. 14: KUUKUKUUKUKK. Fig. 15 UKUKKUKKUKUU. Fig. 16
KKKKKKKKKKKKK



The Unknot Problem

Try all moves? exp-time

([~ S ~)

Complexity:

e in NP [Hass, Lagarias, Pippenger ‘99]
e in co-NP [Kuperberg ‘14m Lackenby 16]

means probably not NP-complete since
then NP = co-NP, which is opposite of consensus.

e butisit P, like primes? [Agrawal, Kayal, Saxena, ‘02]
or BQP, like factorizing integers? [Shor ‘94]

or something else entirely?

See [Lackenby, 2002.02179] for a
recent survey of results.



Decisions and Reformers

can neural networks decide the unknot problem?
do modern NLP architectures help?



Generating Data: Priors for Random Knots and Unknots

Algorithm 5 RANDOMUNKNOT: generate random unknot representative. Algorithm 6 RANDOMKNOT: generate random non-trivial knot representative.
Require: njetters, M € Z. Require: 7jctters, Nstrands; M € Z.

Braid B < empty braid word. Braid B ¢ empty braid word [}
i hile |B stters
while |B| # Nietters dO while |B| # njetters do
i if |B| > njetters then
if ‘B‘ > Netters then 1Bl o .
B «+ empty braid word.
B + empty braid word.

end if

end if while |B| < njetters do
for ke {1,..., M} do i ~U{0,1}).

B <+ RANDOMMARKOVMOVE(B). 7 ~U{O,..., nstrands — 1}).

if |[B| — 1> 0 then B« B+[(-1)'j]

B + BRAIDRELATION2(B, start position~ ({1, ...,|B|})). end while

end if B + KNOTIFY(B)

SR if B # [| then > Knotify sometimes yields an empty word.

for ke {1,...,M} do
B + RANDOMMARKOVMOVE(B).
B < BRAIDRELATION2(B, start position~ U({1,..., |BI}))-

B < SMARTCOLLAPSE(B).
end while

return B. end for

B < SMARTCOLLAPSE(DB).
end if

end while

Q: how do we generate examples? return




The Prior at Low Crossing Numbers

Fact: knots with 9 or fewer
crossings are detd by Jones poly.

Therefore, sample from our priors
for N <= 9, map onto Rolfsen.

Notes:
- deviates from uniform distribution.

- small N + trefoil most likely,
but increasingly less likely for larger N.

O D P

Figure 1: Examples of knots. From left to right: unknot (0;), trefoil (3), figure-eight (4;),

51, and 53.
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Figure 8: Drawing 6455 N = 9 braids from our prior yields knots with 9 or fewer crossings,
4664 of which are prime. Plotted are the number of occurences of knots in the Rolfsen
table for knots with 3 through 9 crossings, with mirrors counted for knots that are not
self-mirror.



Attention, Attention! Meet Reformers.

Attention Mechanism: learn what in the sequence
carries the most meaning, i.e. pay attention to it.

“Attention is all you need” [1706.03762, Vaswani et al.]

Reformer: The Efficient Transformer

Upshot: efficiency gains due to replacing scaled
dot-product attention with locality-sensitive
hashing (LSH) attention. O(L%) — O(L log L)

“Reformer: The Efficient Transformer” [2001.04451, Kitaev et al.]
Good library: reformer-pytorch

bpd

4.3

4.2 1

4.0 1

3.9 1

3.7

3.6

Q: Think about beginning of my talk.
what words do you remember and why!?

LSH Attention on Imagenet64

— full attention
~~~~~ 2 hashes

4 hashes
—-- 8 hashes
—— 16 hashes

20K

40K 60K 80K 100K 120K 140K



Decisions, Decisions

binary class. on unknot decision.

trained on thousands of knots
and unknots with diff. #s of
crossings.

Comments:

1) NLP wins, but barely. (b/c easy?)

2) Reformers ~ Transformers

3) performance up with N, a lot of fixed
# words, less so for fixed # letters.

Performance vs. Npashes O Full Attention

8
= 95
Q
(@]
= 90 Nhashes/ Full Attn.
[a¥ —— Full Attn.
=4
L gk
85
0 10 20 30 40 50

Epoch

(a) Performance dependence on the number of lo-
cality sensitive hashes.

Reformer Performance vs. Braid Length N
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(c) Performance dependence on the braid length.
Performance increases with N.

Reformer vs. FFNN Performance
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(b) Performance comparison between reformer
and feedforward network.

Reformer Performance vs N, njetters fixed
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(d) Performance when number of braid letters,
rather than number of braid words, is fixed.



Hardness and Jones Correlations

Hardness:
@ right, note some small peaks in wrong spot,
networks quite sure of their wrong predictions!

hardness of knot persists across diff. inits.

e.g. 1000 N<=9 test braids have 30 hard instances,
19 of which are trefoils, despite ~ % knots being
trefoils. Knots with fewer crossings harder!?

Jones Polynomial Correlations:

@ right, network confidence on correctly labelling

knots correlated with Jones degree.

Jones not used in training at all! Learned feature.

Knot Output Distribution

Unknot Output Distribution
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Unknotting and Reinforcement

can reinforcement learning find the
sequence of moves that unknots?



Reinforcement Learning

an agent interacts in an environment.
it perceives a state from state space.
its policy picks an action, given state.

arrives in new state, receives reward. > 2
successive rewards accum. to return. G = E Y Ria ka1
future rewards penalized by discount. k=0

state- and action-value functions: v(s) = E[Gy|S; = 5]

q(s;a) = E|G¢|S: = s, As = a



Famous Example: AlphaZero

Chess Shogi Go
“Mastering the game of Go AlphaZero vs, Stockfish AlphaZero vs. Elmo ol v D
' ” E DEEEEEEEE
without Human Knowledge = z

- Silver et al, Nature 2017

A ik
&R |2 | X |2 |R(EE

RL with no human data.

W:20.0% D:70.6% L:0.4% W:84.2% D:22% L:13.6% W: 68.9% L:31.1%

o] | ] | [

“ . . o] | | I

A general rEIHfOrcement learnlng W:20% D:97.2% L:0.8% W:982% D:0.0% L: 1.8% W: 53.7% L: 46.3%
algorithms that masters chess, reTeT 3
1 _ ” / 1,98 0, /////;/ //// ?—) :_
shogi, and Go through self-play: e En :
- Silver at al, Science, 2018 PP g 171
i _ 0 S 5%

i % 8
w % I 0% t t t T
X 7 [ ] 0:00 2:00 4:00 6:00 8:00
O ‘ Hours of Training



Unknotting with RL

State Space:
zero-padded braids of length 2N.

Action Space: dim=N+5

1) shift left

2) shift right

3) BR1and shift right

4) BR2 and shift right

5) Markov 1, conjugate by arb. gen.

6) SmartCollapse: destabilize and remove
inverses until unchanged

Reward: negative braid length
End of game: empty braid or 300 moves.

RL Algorithms:
A3C: asynch. advantage actor-critic,
worker bees report back to 2 A/C nets.

TRPO: trust region policy optimization.
Policy updates and steps depend on
loss curvature.



Results + Interpretability

Algorithm
_——- 0.351 . tra:m‘ ] d
. g 0.245 e L] untralne
RL wins. S0 o ;
RW decreases rapidly. Lo 01m 0.168 e 0.163 s 0.162
TRPO crushes: flat in N. 3015 e i f
Y] .10
% 0.10-
Wins not just in % solved in <= 300 moves (below), & 0.05- + -+
but also in number of moves performed. 0.00- i | i i T
SmartCollapse  BR1&shift BR2&shift shift left shift right Markov 1
Accuracy vs Braid Length
® aye .
05 @ - g Interpretability via rollout.
o e i.e. learning is a flow in the state-dependent
[ ] Yo . . . . .
_06- - i distribution on action space. how does it change?
> ® TRPO
5 ® A3C
e ° © ® RW .
104 SmartCollapse: only action that reduces N.
o
0.2 2 ° Shift left / right asymmetry b/c many shift rights come

20 10 60 80 100
Braid Length

Percentage of moves performed by agent for N = 96

for free. See paper for more interpretation!



Example 1: Conclusions

NLP techniques natural for knot theory.

see e.g. transformers, reformers, GPT-3

Unknot Decision Problem
O) complexity results abound
1) defined a prior, mapped to Rolfsen

2) reformers do better than FFNN

3) but FFNN still do well! easy problem?
4) notions of hardness and Jones
correlations arise naturally

Reinforcement Learning
O) agent learns to alter behavior,
e.g. as in AlphaZero

1) environment: states are braids; actions
are braid and Markov moves, composed;
rewards are negative braid length; goal is
to unknot the braid.

2) TRPO performance great, flat in N!
3) Interpretability via rollouts.



Example 2: Physics — ML

“Neural Networks and Quantum Field Theory”

[J.H., Maiti, Stoner] arXiv: 2008.08601

Related Non-Gaussian Process works:
[Dyer, Gur-Ari] 1909.11304 on bounding training
[Yaida] 1910.00019 on pre-activation distribution flow



What is learning?

Physics Language:
Learning is a data-induced flow from an initialization
function-space distribution to a trained distribution.

Bayesian Language:

Learning is approximating the posterior over functions
given a prior and a likelihood.

Distribution at
Initialization

Learning

Legend:
‘ Randomly initialized NN

‘ Trained NN

Trained
Distribution

function space



Then what is supervised learning?

the evolution of the 1-pt function E[f] until convergence.



Example 2: Qutline

What is QFT? (physically? origin of Feynman diagrams. statistically?)

- NN-QFT Correspondence: model NN distributions with QFT techniques
i) asymptotic NNs, GPs, and free field theory

ii) NNs, non-GPs and Wilsonian “effective” field theory.

iii) renormalization: removes divergences in higher correlators, simplifies NN dist.

- Experiments: A slide
- Discussion and Outlook: parameter-space / function-space duality, training



What is QFT?

physically?
what are Feynman diagrams?
statistically?



What is QFT, thSIca"Y" Example: Higgs boson discovery

e quantum theory of fields,
and their particle excitations.

e for both fundamental particles, (e.g. Higgs)
and quasiparticles (e.g. in superconductors)

e asingle QFT predicts radioactive decay rates, The QFT = Standard Model

. : (SM) of Particle Phys.
strength of particle scattering, etc. 4
. 2012: Discovered Higgs
e two main perspectives: boson at CERN, e.g., in
“canonical quantization” (bra-ket approach) === t diphoton channel @ left.
Feynman's path integral (today). .

Amazing science press.

e Many Nobel prizes. (Could easily rattle off 5-107) 2013: Nobel to Higgs, Englert.



Origin of Feynman diagrams?

Pictures useful for computing moments Example: Near-Gaussian Moments
of Gaussian or near-Gaussian distributions via Perturbation Theory
om J drexp(—zaz® + Ax') 2?
Example: Gaussian Moments (@) = [ d exp(—Laz? + Aat)
(22) = J23 da exp (—3aa?) 2™ _ i(Qn T _ 2o 2—? fdxexp —gax®) * [ dy exp(—jaa?)
f_+oo dx exp (—3ax?) a" A fd:): exp(—saz?) [ dx exp(—3ax?)
oo Ak ontak
() I 1 N N Y — k=0 k"/\ix )G for small A, truncate
4 k=0 k! <x4k>G
B <% ' %> N G ' %) " (é ' %> - @ Additions and extra widgets may arise, but

Essence: approximate non-Gaussian moments in
Feynman rules: a picture-expression dlctlonary terms of Gaussian moments, diagrammatica[[y_



Sounds like QFT is physics widgets
on top of a statistics backbone.



What is QFT, statistically?

defined by distribution on field space,
the so-called Feynman path integral.
log-probability S[®] is “action”

Experiments measure n-pt
correlation functions and amplitudes.

Free QFT: no interactions, Gaussian.
Perturbative QFT:

distribution is near-Gaussian, compute
approximate moments perturbatively.

/= /que_s[¢]

Gz, ..., z,) =

1

/ Dé $(z1)... d(z,) e



NN-QFT Correspondence

i) asymptotic neural nets, GPs, and free QFT
ii) finite N neural nets, non-GPs, interacting QF T
iii) Wilsonian renormalization

A way to model NN distributions
using QFT techniques



Asymptotic Neural Networks

neural network has a discrete hyperparameter N
that enters into its architecture.

asymptotic limit = N — oo limit

crucial property: want to add infinite number of
parameters, which themselves are random variables!

example:
infinite width limit of single-layer or deep
feedforward networks
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Simplest Example: Single-Layer Networks

A single-layer feedforward network is just

. Wo, bo o Wi, b1
fon : Rén » RY = RY

N Rdout

f(flj) — Wl (O-(WOZE _|_ bO)) _I_ bl parameters drawn as bg, by ~ N (s, 07)

Wo ~ N (pw, oy /din) Wy ~ N (uw, o3y /N)

Limit of interest: infinite width N — o,

Then output adds an infinite number of i.i.d. entries from W, matrix, so CLT applies, output drawn from Gaussian!
Language: the neural network f is drawn from a Gaussian process, i.e. Gaussian function-space distribution.



NN-GP Correspondence and Central Limit Theorem

Add N iid random variables, f@ N |Rdin N [Rdout
Y,

take N — oo,
sum is drawn from a Gaussian distribution.

Ao b
IS AR A
. . SR IA_ RSSilA RS
If some step in a neural net does this, «%»ig,"ffwtwmww‘m%\\\g.
i S
@

that step drawn from Gaussian.

e

KX

PV
SR A
,4@‘\\\‘, VA %%%{}%}g\%§ //Zi/i.
NN SN 5 SO /
Wl LSS SN
5/// 0‘\\\\‘//0\\\\\

N

SN R
//'/':,'!"5‘¥A\\§‘.!,i‘:zilax“ AN
.

e.g., if NN output does, it's drawn from a Gaussian.

W .

N

A A\\\?. S “?.J
\
O

then NN is drawn from Gaussian distribution on
field space, known as a Gaussian Process (GP).



“Most” architectures admit GP limit

Single-layer infinite width feedforward networks are GPs. ~ iean. witiamg 1990

Deep infinite width feedforward networks are GPs.  neeetal, 207, Matthews etat, 2018)
|I'T|:Inlte Chan nel CN NS are GPS [Novak et al., 2018] [Garriga-Alonso et al. 2018]

Tensor programs show any standard architecture admits GP limit. v 201

infinite channel limit [5, 6]. In [7, 8, 9], Yang developed a language for understanding which
architectures admit GP limits, which was utilized to demonstrate that any standard architecture
admits a GP limit, i.e. any architecture that is a composition of multilayer perceptrons, recurrent
neural networks, skip connections [10, 11|, convolutions [12, 13, 14, 15, 16] or graph convolutions
[17, 18, 19, 20, 21, 22|, pooling [15, 16], batch [23] or layer [24] normalization, and / or attention
[25, 26]. Furthermore, though these results apply to randomly initialized neural networks, appro-
priately trained networks are also drawn from GPs [27, 28]. NGPs have been used to model finite

tons of examples cited
in our paper admit GP limits

neural networks in [29, 30, 31|, with some key differences from our work. For these reasons, we
believe that an EFT approach to neural networks is possible under a wide variety of circumstances.

GP property persists under appropriate training.  pecotetal, 20181 Leeetal, 201)



Gaussian Processes and Free Field Theory

Gaussian Process:

distribution:  P[f] ~ exp [—%/ddingc ddinx/f(x>5(x,gj/)f<x/)]

where: /ddinx' K(z,2)E(x,z") = 61 (z — z)

K is the kernel of the GP.

1

log-likelihood: S = 7 /ddinx d=g' f(x)E(z,z')f(z')

n-pt correlation G™ (g, ..., z,)

S f@) ) e

functions:

Z

Free Field Theory:

“free” = non-interacting
Feynman path integral:

7 = / D¢ e

From P.l. perspective, free theories
are Gaussian distributions on field space.

e.g., free scalar field theory

S[é] = / 4 3(2)(0 + m2)g(z)

GP / asymptotic NN

Free QFT

Crucial note:
P[f] can also have one or zero integrals,
“local” and “ultra-local” cases, respectively.

inputs (z1, ..., xk)
kernel K (z1,z2)
asymptotic NN f(z)
log-likelihood

external space or spacetime
Feynman propagator
free field
free action Sgp

points




GP Predictions for Correlation Functions

if asymptotic NN drawn from GP and
GP “=" free QFT, should be able to use Feynman
diagrams for correlation functions.

_ [df flxy)... f(z,)e™®

G(n)(l'l,.. : A

, Tn)

Right: analytic and Feynman diagram expressions
for n-pt correlations of asymptotic NN outputs.

Physics analogy: mean-free GP is totally
determined by 2-pt statistics, i.e. the GP kernel.

kernel = propagator, so GP = a QFT where all
diagrams rep particles flying past each other.

G&)D(xla@) —

Gg%($1733273337334) — K(aj17$2)K(3§3ax4)

+ K (21, 13) K (22, 14) + K(21, 14) K (22, 73)

1 X3 1 X3 I T3
— + + \
%) Ly ) 7 ) X4



What about finite N nets?



Non-Gaussian Processes (NGPs), EFTs, and Interactions

Punchline: finite N networks that admit a GP limit Wilsonian EFT for NGPs:
ShOUld be dl‘awn from non'GaUSSian pI’OCGSS. (NGP) e Determine the symmetries (or desired symmetries) respected by the system of interest.

e Fix an upper bound % on the dimension of any operator appearing in AS.
S — S GP _|_ A S e Define AS to contain all operators of dimension < k that respect the symmetries.
determines NGP “effective action” = log likelihood.
where, e.g., could have a model: Some art in this, but done for decades by physicists.

AS = / d%n g g f@)?+ A f@) +af(@)’+kf(@)’+...]
Experiments below: single-layer finite width networks
S = Sgp +/ d%z [\ f(2)* + K f(2)°]

such non-Gaussian terms are interactions in QFT.
their coefficients = “couplings”

NGP / finite NN Tnteracting QF T odd-pt functions vanish — odd couplings vanish.
inputs (z1,...,x;) | external space or spacetime points
kernel K (x4, 2z2) free or exact propagator . .
network output f(z) interacting field k is 1/N suppressed rel. A, somes more irrelevant
log probability effective action 5 (Wilsonian sense), gives even simpler NGP distribution.



NGP Correlation Functions from Feynman Diagrams

Correlation functions defined by NGP distribution:

_Jdf f@) - fan) e’
Zo

G (zy,...,z,)

use usual physics trick

_ [df f(x)... f(zn) [1 — fddinxgkf(x)k + O(gz)} e % [Zapo
Jdf [1 — [ddnz g f(x)* + O(g,%)] e=5ap [ Zap o

to compute diagrammatically as Feynman diagrams.

Essentials from QFT reviewed in paper,
e.g. cancellation of “vacuum bubbles” (components with no
external points) by expanding the denominator.

Feynman Rules:

1) For each of the n external points z;, draw I’"" :
i
2) For each y;, draw  >*{ . For each z, draw --:-:'::-- 3
BARARN 2P g

3) Determine all ways to pair up the loose ends associated to z;’s, y;’s, and z’s. This will yield
some number of topologically distinct diagrams. Draw them with dashed lines.

4) Write a sum over the diagrams with an appropriate combinatoric factor out front, which is
the number of ways to form that diagram. Each diagram corresponds to an analytic term

in the sum.

1.5) Throw away any diagram that has a component with a A- or x correction to the 2-pt function.
5) For each diagram, write — [ d%=y; A for each ':1/.:~ ,and — [ d%nz k for each --=e%-- .
P ] ~ R 8%,
6) Write K (u,v) for each ®--< .
u

v

7) Throw away any terms containing vacuum bubbles.

these rules are a picture to
analytic expression dictionary.

note: in our experiments, GP kernel happens to
be exact all-width 2-pt function.



2-pt, 4-pt, and 6-pt Correlation Functions

G(2)((El N (Ez)

12 ¢, Y To

) e -]

= K(x1,22), (3.17)

G<4)($11 Tg,x3,T4)

— [, Q.

3 A2y
*~—e

x| 540 8 + 360 Q

>~ Z
3% _oan el 360k ¥
*----9 e Y Y% o’ z ‘e

K (@1, x9) K (v3,24) + K (21, 23) K (22, 24) + K (21, 24) K (29, x3)
24 [ @y AK @1, )K (22, 0K (2, 9)K (21,0)

360 /dd‘“z k K (21, 2) K (22, 2) K (23, 2) K (24, 2) K (2, 2)

(3.18)

+ o+ + o+ o+

+ o+ + o+

GO (zy, x4, T3, T4, T, Tg)

R,
=15 e---=
—

point: theory equations that
actually enter our NN codes.

—o

- ~[720>g<+5400:3i+4050 ]
& ~— — o

— {»40._0_.

= 15— -2 — Y 360 Y ]

[1\'121\'341\'36 + K12K35 K46 + Ki2K36Ka5 + K13 K04 K56 + K13 Kos Kag + K13Ko6 K5 + K14K23 K56

K14K25 K36 + K14K26 K35 + Ki5Ko3 Kag + K15 K04 K36 + K15 K26 K34 + Ki6K23 Kys + K16K24 K35

1\'1(;1\'251\';,4] -2 / dlny A [1\’1ylx’zyl\z,yA;yJ\}-,ﬁ + K1y Koy Ky Ksy Kus + K1y Koy Kiy K5, Ko

Ky K3y Kay K5y Ko + Koy K3, Ky K5, K16 + K1y Koy K3, Ky Kys + K1y Koy Ky Koy K35

K1y K3y Kay Koy Kos + Koy K3y K4y Koy K15 + K1y Koy K5y Ky K3q + K1y K3, K5, Ky Koy

Koy K3y K5, Koy K14 + K1y Ky K5, K6y Koz + Koy Ky K5y Koy K13 + K3y Ky K5, Koy K12

720 /dd“': K K. K>,

K. KK, K3, K5, Ka6 + K. K1, K>

3: K4 K5. K16 + K.. K. K.
oKy K. Kos + K. K>

K. K1 K5, Kg, — 360 / A%z K [1\;:1\',:1@:1\;:1\'4:1;:,(,

Ky K5.K36 + K.. K. K5
3. K. Kus + K. K1 K
Ky Ko K15 + K. K. K.

Ky K5:. Ko
K. K. K35

52 K62 K3

K..K\.K3.K5.Ke. Kog + K.. K2. K3. K5. K. K14 + K. K. K4: K5. K6 Ko3

K. K. K. K5.Ke. K13+ K..K3. K. K5. K¢, K 2:| 5 (3.19)



At this point you should object!

(very impressive attention to detail if you actually did.)
Input space integrals often diverge at large input.

QFT prescription: “regularization”
Various varieties, we use a “hard cutoff” A, replace

S—)SA

so any input integral is over a box of size A.



Making sense of divergences: Renormalization

Experiments: the central insight in renormalization.

[Zee] for beautiful textbook discussion.

Evaluate set of NNs on inputs

Sin:{ilfl,...,CENi}
zi| < A

and measure experimental correlation functions,

1 Mnets
IG(")(xl,...,xn) == Z fal®a) <o« fal®a)
t nets aEnets

Goal of theory is to explain them.

Theory: NGP action corrects GP action by

A
ASy = / a3 go(A) O,
=0 1<k
the old S had A— e« and computing n-pt gives
divergences. /\ finite regulates those divergences,
input is now in a box.

For any A sufficiently big, measure couplings,
make predictions, verify with experiments.

But there's an infinite number of §, ,and only
one set of experiments for them to describel
How does this make sense?



Essence of Renormalization

the infinity of effective actions must make
the same experimental predictions, requiring, e.g.

dG(n) (LCl, ce ,il’,'n>
dA\

=0



Extracting S-functions from theory

NN effective actions (distributions) with different
A\ may make the same predictions by absorbing
the difference into couplings, “running couplings.”

L dgol
Blgo,) = dlogh

Encoded in the B-functions, which capture how
the couplings vary with the cutoff.

Induces a “flow” in coupling space as A varies,
Wilsonian renormalization group flow. (RG)

Extract from hitting n-pt functions with derivatives.

k more irrelevant than 4, in sense of Wilson.
Means as A\ gets large, k goes to zero faster than 4,
SO you can ignore it.

Extract B-function for A from deriv. of 4-pt.

OGW (z1, T3, T3, T4) O\ A a(fA dBing (yax + 010))
) b b — — ddin A 7A y y
Blloght U= Flogh T +o1x) + log A
d%z (Yo + 04,x))
din f 745 Q4 N
+ alogA / T (Y + 0an) + Bilogh p IR
8G(6)($17$27$371'471'5,$6) _ _ 6)\ i din 8(ffA (ldi“,'L' ("fﬁ,)\'i'!_)ﬁ,)\))
dlogh = 0= Flogh /_Ad o+ 060) A 8logA
Ok i iy f ding +96,~))
m /—Ad @ (s + o) + BlogA 14)
Our examples:



A Flash of Some Experimental Results

2

2 z .
Erf-net: o(z) =erf(z) = ﬁ/ dt e Ki(z,2') = 07 + o7y — arcsin
0

[\/(1+2(05+§:x2)) (1+2(a§+ﬁ:x’2))]

exp (W x +b)

Voxp 2002 + Fra?)]

Gauss-net: o(z) =

0‘24/|£U—£E/|2:|

Kaussl2,% ) = 05 + J%V exp {— 5

. — O Z<O / 2 2 1 2 UYZ/V 2 O-XQ/V / (g
ReLU-net: o(z) = L =0 Kreru(z,2') = T + 0w 5 (0b+d- :I:~x)(ab+d. o' - x')(sinf + (m — @) cos 0),

2
O1x7
op+ X

[¢<oz+ %oy a)ot+ P ol o)

§ = arccos

)



A Flash of Some Experimental Results

Experimental description

Experiments in three different single-layer networks,
with RelLU, Erf, and a custom “GaussNet” activation.

Drew millions of models and evaluated on fixed sets
of input to do experiments with correlators and the
EFT description of NN distribution.

Dependence of Quartic Coupling on Cutoff

ReLU-net Ay, N =20,d;, =1

—— slope = —5.003, R? = 1.0

l()gl() )\IH
| |
N =

|

ReLU-net A, N =20,d;, = 2

—— slope = —6.004, R* = 1.0

Depends on input dimension.
See quartic is asymptotically free.

NGP correlators become GP correlators as N — «

ReLU-net 2-pt Deviation, d;, =1 ReLU-net 4-pt Deviation, d;, = 1 ReLU-net 6-pt Deviation, d;;, = 1

==

- —— 4-pt signal —— 6-pt signal
T — 0 background 1 I\.\lrkmiuml
S 3 £ \
B e £ £ 0
Ty a , g
—— 2-pt signal — B
background -2 =
2 3 1 2 3
logyg NV log,g N
Verification of EFT Predictions
ReLU-net A\, N = 20,d;, =3 (Ao, Az, Anr) Test (MAPE, MSE)
5 t = Gauss M, (0.0,0.0,0.0) (100,0.019)
—~10 Smisone =S E 00 S UA0RS Gauss M, (0.0046,0.0,0.0) (0.0145,6.8 x 10~ 10)
45 Gauss M, (0.0043,0.0011, 0.0) (0.0144,6.7 x 10~19)
S —20 Gauss Ms (0.00062, 0.00016, 0.0015) (0.0156,7.5 x 10~ 1)
&0 ReLU M, (0.0,0.0,0.0) (100, 0.003)
— =30 ReLU M, (6.2 x 10-1£,0.0,0.0) (0.0035,7.6 x 10 12)
ReLU M, (12 x 107 ¥ 8.7 x 1075,0.0) (0.0013,1.5 x 10~ 2)
2 4 ReLU M; (1.2x 10 ®,87x 10 1,68 x 10-17) (0.0012,1.2 x 10 12)
log;o A Erf M, (0.0,0.0,0.0) (100, 0.006)
Erf M, (0.039,0.0,0.0) (0.030,8.3 x 10~ 1)
Erf M, (0.040, —0.00043, 0.0) (0.0042,1.9 x 10~ 1)
Erf M; (0.0019, —0.0054, 0.0063) (0.037,1.1 x 1077)

Test / train split on connected 4-pt function
to verify predictions of measured couplings.



Example 2: Discussion and Outlook

summary,
parameter-space / function-space duality,
supervised learning in QFT language



Example 2: Summary

asymptotic NN's “=" Free QFT

GP / asymptotic NN Free QFT

inputs (z1,...,zx) | external space or spacetime points
kernel K (1, xs) Feynman propagator
asymptotic NN f(z) free field
log-likelihood free action Sgp

b/c drawn from GPs

NNs “=" QFT

NGP / finite NN Interacting QFT

inputs (z1,...,2;) | external space or spacetime points
kernel K (x1,z2) free or exact propagator
network output f(x) interacting field
log probability effective action S

b/c drawn from NGPs

central idea: model NGP / NN distribution using
Wilsonian effective field theory. (EFT)

fairly general: any “standard architecture” (Yang)
admits a GP limit. persists under some training.

therefore, away from limit, NGP. use EFT to model.
import QFT ideas directly into NNs.

EFT treatment of NN distribution yields:

1) output correlation functions as Feynman diagrams.

2) measure some couplings (non-Gaussian coeffs) in
experiments, predict, verify in experiments.

3) Wilsonian RG induces flow in couplings, simplifies the
model of the NN distribution.

Verified all of this experimentally, single layer networks,
indeed QFT gives function-space perspective on NNs.



Example 2: Gains in Perspective

Duality:
In physics, means two perspectives on a single system,
where certain things are easier from one.

Parameter-space / function-space duality:
at large N, parameter-space complexity explodes.

but in function-space complexity decreases due to
renorm. and 1/N suppression of non-Gaussianities.

Acute example: single number in NGP dist. was sufficient
to approximate NGP 6-pt corrections, despite losing an
c number of params in moving from GP.

Training:

Our formalism only requires being “close” to GP,
where measure of closeness determined
experimentally and in examples is relatively low N.

Some training preserves GP at large N, in principle
allowing QFT treatment of NGP during training.

Supervised learning;:
in QFT language, it is just learning the 1-pt function.

in general this will break symmetry of NGP (see
paper next week for priors), bring in even more QFT.



Summing up the whole talk



Overarching Conclusions

Example 1: ML — Math

Natural language for deciding the unknot.
Reinforcement learning for actually unknotting!
Interpretability via rollouts.

Example 2: Physics — ML

Neural nets are drawn from near-Gaussians.

But near-Gaussian distributions are the backbone
of perturbative QFT.

Directly import techniques from QFT to NNs.

VAN

Towards a triangle of influence?

Physics <> Math for millenia.

CSisinits infancy,
but it is different and powerful.

Will it become the third vertex?



Thanks!

Questions?

And seriously, feel free to get in touch:

e-mail: jhh@neu.edu
Twitter: @jhhalverson

web: www.jhhalverson.com



mailto:jhh@neu.edu
http://www.jhhalverson.com

