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My Dream!
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Distance to horizon 6.2km

Hidden height 125.6m
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Well it kinda looks like a ball from the moon
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Why does this not make sense?

Hypothesis

Experiment

Evidence
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Or not
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Laplace Demon

All these efforts in the search for truth tend to lead the
human mind back continually to the vast intelligence which
we have just mentioned, but from which it will always re-
main infinitely removed.
– Laplace Laplace, 1814a
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Today

Where does machine learning fit into the scientific workflow?

1. How do we implement the scientific principle?

2. How do we implement Occam’s razor?
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Machine Learning



Linear Regression
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Linear Regression
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Linear Regression: High School

A︸︷︷︸
m×n

x︸︷︷︸
n×1

= b︸︷︷︸
m×1

• Over-determined m > n

x̂ = argmin
x

m∑
i

(bi −Ai:x)
2

• Under-determined m < n

x̂ = argmin
x

m∑
i

(bi −Ai:x)
2 + λxTx
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Linear Regression: Modelling
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Linear Regression: Modelling

yi = wTxi + εi

εi ∼ N (0, β−1)
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Belief/Hypothesis

y = wTx+ ε
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Likelihood

"Given the premise that the earth is flat, how supportive do I
believe observations y are of this?"
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Linear Regression: Modelling
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Linear Regression: Modelling
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Linear Regression: Likelihood

p(y|w,x) = N (y|wTx, β−1I)
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But I don’t believe in a flat earth
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Prior
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Prior
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Prior

w ∼ N (0, 2)

34



Prior

"Well this is how much credibility belief I give to the hypothesis
that the earth is flat"
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Two opposing theories
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That French Dude Again

It is remarkable that a science which began with the con-
sideration of games of chance should have become the most
important object of human knowledge.
– Laplace Laplace, 1814b
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Bayes’ "Rule"

p(y, w) = p(y|w)p(w)
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Semantics

p(w | y) = p(y | w)p(w)∫
p(y | w)p(w)dw

Likelihood How much evidence is there in the data for a specific
hypothesis

Prior What are my beliefs about different hypothesis

Posterior What is my updated belief after having seen data

Evidence What is my belief about any observations
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Linear Regression Example
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Linear Regression Example
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There is overwhelming evidence
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Knowledge is Relative
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Data and Knowledge
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Data and Knowledge
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Data and Knowledge
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Scientific Principle



Scientific Principle

Hypothesis

Experiment

Evidence
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Where do we start

• Inductive Reasoning

Observation → Pattern → Hypothesis → Theory

• Deductive Reasoning

Theory → Hypothesis → Observation → Confirmation
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Deductive Science

"Science should attempt to disprove a theory, rather
than attempt to continually support theoretical hypothe-
ses."

– Karl Popper The Logic of Scientific Discovery
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Deductive Science

1. Facilitate viewing implications of Hypothesis in observation
space

p(w)→ p(w | y)

2. Facilitate selection procedure of Hypothesis preference

w1 � w2 p(y | w1) = p(y | w2)
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What is a good hypothesis?

"In so far as a scientific statement speaks about reality, it
must be falsifiable: and in so far as it is not falsifiable, it
does not speak about reality."
– Karl Popper The Logic of Scientific Discovery
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What is a good hypothesis?

"A theory that explains everything, explains nothing"
– Karl Popper The Logic of Scientific Discovery
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Logic vs. Probability

P → ¬Q

¬P

Q

p(y) =

∫
p(y|θ)p(θ)dθ
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Falsifiability and Occams’ Razor

• A hypothesis should be judged based on how easily it can be
falsified

• The more general a theory is the more cases/possibilities it
allows for falsification

• "The more strongly our framework can differentiate different
hypothesis the better it is for falsification"
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Distributions
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Model Evidence and Occams’ Razor

p(y) =

∫
p(y | w)p(w)dw
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What is can be falsified?
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The MacKay Plot Mackay, 1991
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Is Machine Learning a Science?

• How to build mathematical models of hypothesis

hypothesis ≈ p(w)

• How to mathematically update our knowledge with data

p(w | y) ≈ p(y | w)p(w)∫
p(y | w)p(w)dw
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Summary



Summary

Machine Learning is a framework for combining knowledge with
data to recover an interpretation of the data in light of the
knowledge.
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Where does Knowledge Come From?
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Machine Learning and Science
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Don’t believe the hype
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Summary

"There is no logical paths leading to "these laws" they can
only be reached by intuition based on something like and
intellectual love of the objects of experience"
– Albert Einstein
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Thats why they disappeared
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eof
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