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Outline

I The Standard Model of particle physics and Quantum Chromodynamics.

I A machine learning model of particle masses.



What ties all of known Physics together?

Invariance of natural laws under symmetries of Nature.

I Newtonian Mechanics: Galilean invariance.

I Electromagnetism and Relativistic Mechanics: Poincaré invariance.

I General Relativity: Invariance under diffeomorphisms of spacetime.

I Standard Model of Particle Physics: Invariance under gauge symmetry.

The Standard Model of Particle Physics is a theory that unifies Electromagnetism,
Weak, and Strong nuclear forces.
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Unification: What ties all of known Physics together?

Invariance of natural laws under symmetries of Nature:

I Standard Model of Particle Physics (SM): Invariance under the gauge symmetry
SU(3)×SU(2)×U(1).

I Grand Unified Theory (GUT): Invariance under gauge symmetry
SU(5)/SO(10)/E6/(?).

I Quantum Gravity: Invariance under gauge symmetry E8×E8/SO(32)/(?).

The mathematician in the picture?



The Standard Model of particle physics



Quantum Chromodynamics ⊂ Standard Model

I Standard Model of Particle Physics (SM): Invariance under the gauge symmetry
SU(3)×SU(2)×U(1).

I The SU(3) corresponds to the Quantum Field Theory of strong interactions,
called Quantum Chromodynamics, or, QCD.

I QCD is the theory of strong interactions between quarks and gluons (carriers of
strong force).

I Quarks and gluons combine to form composite particles called hadrons.

Photon,
W+, W-, Z0,
Gluon,
Higgs

Mesons
(pions,

kaons, ...)

Bosons Fermions
Baryons
(proton,

neutron, ...)

Leptons
(electron,
neutrino, ...)

Hadrons



Color charge in Quantum Chromodynamics

I Each quark can have N = 3 color charges. Their anti-particles (anti-quarks)
have opposite color charges. Gluons carry a color-anticolor charge. In
comparison, there is only one type of electric charge.

I Quarks and gluons combine to form composite particles called hadrons at
energies below ΛQCD ∼ 330MeV . Compare this to the energy scale of operation
of the Large Hadron Collider (∼ 14TeV ).

I Loosely speaking, hadrons can be composed of either equal number of quarks
and anti-quarks (mesons), or an odd number of quarks (baryons), or anti-quarks
(anti-baryons). These are colorless bound states at low energies.



Color charge in Quantum Chromodynamics

The idiot physicists, unable to come up with any wonderful Greek words anymore, call
this type of polarization by the unfortunate name of ’color’, which has nothing to do
with color in the normal sense.

Feynman, Richard (1985), QED: The Strange Theory of Light and Matter.



A zoo of particles

[particlezoo.net]



Summary from the zoo of particles

I Mesons are made of equal number of quarks and anti-quarks (usually one of
each).

I Baryons are made up of an odd number of quarks (usually three).



Quantum Chromodynamics: Color confinement

I Quarks have not been observed in isolation.

I Quarks cannot be separated from their parent hadron; instead new hadrons are
produced in the process.



Quantum Chromodynamics: Asymptotic Freedom

I The strength of the strong interaction becomes asymptotically weaker as the
energy scale increases, or correspondingly, the length scale decreases.

I Within the confines of the parent hadron, quarks are essentially free to move
around, or, asymptotically free.

I This was discovered in 1973 by David Gross and Frank Wilczek, and
independently by David Politzer.



Quantum Chromodynamics: Asymptotic Freedom

I This was discovered in 1973 by David Gross and Frank Wilczek, and
independently by David Politzer.

(from Nov 2018 @ MIT)



Baryons as solitons in the mesonic spectrum

I Witten (Baryons in the 1/N Expansion, 1979):

In the limit N →∞ (N being the number of color charges), baryons appear as
solitons in the mesonic spectrum.

I The mesons are effectively free particles with couplings of O(1/N).

I The baryons take masses O(N).

I Can we then recover masses of baryons from properties of mesons alone?

I We will devise a ML model trained using mesonic properties, and use the model
to predict masses of all baryons, and exotic quark states (hypothesised or
otherwise!).

I Lattice QCD, a discrete formulation of QCD, can compute masses of such
hadronic states, but such computations involving Monte Carlo methods are
notoriously expensive.

I Recently, ML approaches to Lattice Field theories in general has received a lot
of attention. See e.g., the collaboration between MIT, DeepMind, and NYU:

(1) Sampling using SU(N) gauge equivariant flows, arxiv:2008.05456,
(2) Equivariant flow-based sampling for lattice gauge theory, arxiv:2003.06413.



Baryons from Mesons: the dataset

Dataset of 196 mesons (training set) and 43 baryons (test set).

Inputs (quantum numbers): ~v = (d , d̄ , u, ū, s, s̄, c, c̄, b, b̄, I , J,P)1 .

Outputs (log mass/1 MeV): log ms .

Representation of a meson (training examples):

charged pion: π+ = (0, 1, 1,~07, 1, 0,−1) , charged pion: π− = (1,~02, 1,~06, 1, 0,−1) ,

Representation of a baryon (test examples):

Proton: p = (1, 0, 2,~07,
1

2
,

1

2
, 1) , Neutron: n = (2, 0, 1,~07,

1

2
,

1

2
, 1) .

1For 1 ≤ i ≤ 10, ~vi ∈ {0, 1, 2, 3, 4}, I ∈ {0, 1
2
, 1, 3

2
}, J ∈ {0, 1

2
, 1, 3

2
, . . . , 4},

P ∈ {−1, 1}



Baryons from Mesons: selecting features

Input 13-vectors do not uniquely identify a particle:

Train input features (GP): ~vtr = (d , d̄ , u, ū, s, s̄, c, c̄, b, b̄, I , J,P, rk) ,

Test input features (GP): ~vtest = (d , d̄ , u, ū, s, s̄, c, c̄, b, b̄, I , J,P, 0) .

Train input features (NN): ~vtr = (d , d̄ , u, ū, s, s̄, c, c̄, b, b̄, I , J,P) ,

Test input features (NN): ~vtest = (d , d̄ , u, ū, s, s̄, c, c̄, b, b̄, I , J,P) .



Baryons from Mesons: baseline model

The constituent quark model assigns the following masses to the constituent quarks:

mu = 336 MeV, md = 340 MeV, ms = 486 MeV,

mc = 1550 MeV, mb = 4730 MeV



Baryons from Mesons: Experiments using a Neural
Network

Neural network: 5 fold cross-validation yielded a single-layer neural network with 50
neurons, and logistic-sigmoid activation. We used ADAM optimiser and the mean
squared loss:

g(θ) =
∑
s

||fθ(~vs)− log ms ||2 .

Experiment : Train on meson data and then test on the baryons and exotics hadrons.
We predict on the test sets by repeating our experiment 103 times, with the neural
network parameters randomly initialised in each run.



Baryons from Mesons: Experiments using a Gaussian
Process

I The Gaussian process is equivalent to a fully connected single layer neural
network with an independent and identically distributed (i.i.d.) prior over its
parameters in the limit of infinite width.

I Thus, Gaussian processes could be used to make exact Bayesian inferences for
infinite width neural networks.

I Making inference using a Gaussian process involves inverting matrices that are
the size of the dataset. A Gaussian process is therefore particularly well-suited
to relatively small datasets, such as ours.

I Further, unlike neural networks, Gaussian processes do not require a validation
set to tune hyperparameters. Instead, Gaussian processes use their own marginal
likelihood – a quantity that captures how well each subset of the training points
can predict the rest of the training points.



Baryons from Mesons: Experiments using a Gaussian
Process

Constructing a Gaussian process proceeds as follows:

I We first specify a positive definite kernel

Kij := k(xi , xj ) ,

where i = 1, . . . ,M runs over the set of training data (mesons), and each xi is a
D-dimensional input vector. The covariance function defines the prior on noisy
observations:

cov(xi , xj ) = k(xi , xj ) + Ni,j , where Ni,j = σ2
nδi,j .

Each positive definite covariance function lends itself to an expansion in terms
of basis functions.



Baryons from Mesons: Experiments using a Gaussian
Process

I Two of the simplest kernels are the squared exponential (SE) and the rational
quadratic (RQ) kernels defined below,

kSE(xi , xj ) = σ2
f exp

(
−

1

2
(xi − xj )

TΛ−1 (xi − xj )

)
,

kRQ(xi , xj ) = σ2
f

(
1 +

1

2α
(xi − xj )

TΛ−1 (xi − xj )

)−α
,

where Λ is a diagonal matrix with entries {λ2
i }

D
i=1, where λi is the characteristic

length scale for the i th feature, and σf is an overall scale. We also have α > 0.

I Since the D distinct characteristic length scales determine the relevance of each
input feature, the kernels above implement automatic relevance determination
(ARD) in our experiments.



Experiments using a Gaussian Process: Model selection

I Model selection in Gaussian processes is done by maximising the log marginal
likelihood with respect to a training set {xi → yi}Mi=1 of size M. This is defined
as

log p(y |X ) := −
1

2
yT (K + N)−1y −

1

2
log |K + N| −

M

2
log(2π) ,

where y is the M-vector of training set output values and X is the collection of
input vectors of size D ×M.

I Maximising the log marginal likelihood sets the hyperparameters of the
covariance function.



Experiments using a Gaussian Process: Model selection

I Maximising the log marginal likelihood sets the hyperparameters of the
covariance function.

I At the optimal value of the hyperparameters, a trade off is achieved between the
complexity of the model and the model fit.

I Once the hyperparameters are set, one can predict the mean (µ?) and the
variance (var?) of the distribution for an unseen input vector x?, using the
formulae

µ? = kT
? (K + N)−1y , var? = k(x?, x?)− kT

? (K + N)−1k? ,

where the components of the M-vector k? are given by k?,i = k(x?, xi ).



Experiments using a Gaussian Process: Model selection
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A toy example: A squared exponential kernel is used to fit the function sin
(
π
2
x
)

shown in red.



Baryons from Mesons: Experiments using a Gaussian
Process

Gaussian Process: We use a rational-quadratic kernel function with ARD distance
measures. At the cost of using a more complex model, we also tried a kernel search
using GPML, but that did not yield significantly better marginal likelihoods.

kRQ(xi , xj ) = σ2
f

(
1 +

1

2α
(xi − xj )

TΛ−1 (xi − xj )

)−α
.

where Λ = diag({λ2
i }

D
i=1). λi is the characteristic length scale for the i th feature. σf is

an overall scale. α > 0.



Baryons from Mesons: NN and GP predictions on lightest
baryons

NN: mp = 1068± 183 MeV, mn = 1205± 206 MeV.

GP: mp = 893.8± 194.4 MeV, mn = 892.8± 193.9 MeV.

actual: mp = 938.28 MeV , mn = 939.57 MeV.

I The GP predicts masses of proton and neutron to within 5%!.

I The neural network accurately predicts the proton to be the lightest in the
spectrum.

I Gaussian process predicts the proton and neutron to be almost degenerate.



Baryons from Mesons: GP predictions on baryons
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I We notice the clustering of masses into three groups.

I The first corresponds to baryons composed of light quarks, u, d, or s.

I The second group corresponds to baryons containing a c quark, while the third
group corresponds to baryons containing b quarks.

Absolute errors: baseline model (shown in orange) 0.087, GP 0.034± 0.032.



Baryons from Mesons: NN predictions on baryons
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I We notice the clustering of masses into three groups.

I The neural network successfully predicts that the proton is the lightest baryon
79% of the time and in a plurality of cases concludes that the neutron is the
next lightest particle.

I The first corresponds to baryons composed of light quarks, u, d, or s.

I The second group corresponds to baryons containing a c quark, while the third
group corresponds to baryons containing b quarks.

Absolute errors: baseline model (shown in orange) 0.087, neural network
0.097± 0.074.



Baryons from Mesons: light–light and heavy–light systems
Hypotheses testing: conventional meson, or tetraquark?

I (JP ) Measured mass (MeV) Composition NN Pred GP Pred CQM Pred

a0(980) 1 (0+) 980 ± 20
uū 1277 ± 246 511 ± 34 680

uūss̄ (KK) 2172 ± 466 1713 ± 68 1652

f0(980) 0 (0+) 990 ± 20
dd̄ 921 ± 117 977 ± 37 672

dd̄ss̄ (KK) 1592 ± 401 1132 ± 312 1644

I (JP ) Measured mass (MeV) Composition NN Pred GP Pred CQM Pred

D∗
s0(2317)± 0 (0+) 2317.8 ± 0.5

cs̄ 2640 ± 433 2434 ± 700 2036

cūus̄ (DK) 4326 ± 925 2474 ± 826 2858

Ds1(2460)± 0 (1+) 2459.5 ± 0.6
cs̄ 2547 ± 39 2535 ± 0.003 2036

cūus̄ (D∗K) 3431 ± 544 2560 ± 788 2858



Baryons from Mesons: heavy–heavy systems



Baryons from Mesons: pentaquarks

uudcc̄ I (JP ) Measured Mass (MeV) NN Pred GP Pred CQM Pred

Pc (4312)+ 1
2

( 1
2

+
) 4311.9 ± 0.7+6.8

−0.6 (4.2 ± 1.2) × 103 3544 ± 923

4112Pc (4440)+ 1
2

( 1
2
−

) 4440.3 ± 1.3+4.1
−4.7 (4.1 ± 1.1) × 103 3253 ± 846

Pc (4457)+ 1
2

( 3
2
−

) 4457.3 ± 0.6+4.1
−1.7 (4.5 ± 1.1) × 103 3581 ± 932



Baryons from Mesons: baryon–antibaryon and dibaryon
states

I (JP ) Measured mass (MeV) Composition NN Pred GP Pred CQM Pred

f2(1565) 0 (2+) 1562 ± 13
uū 1879 ± 70 1275 ± 0.002 672

uuūūdd̄ (pp̄) 2648 ± 613 1284 ± 85 2024

2H+ 0 (1+) 1875 uuuddd (pn) 1585 ± 551 1167 ± 138 2028

2He++ 0 (1+) 1878 uuuudd (pp) 1409 ± 484 1166 ± 163 2024



Summary and Outlook

I Knowledge of the meson spectrum alone is sufficient to approximate masses of
both baryons and exotic colour singlet bound states of more than three quarks.

I Our ML outcome is consistent with the theoretical idea that baryons appear as
solitons in the mesonic spectrum.

I We have shown that simple ML tools for widely available particle physics data
can perform hypothesis testing, and make predictions for masses of
(unobserved) states of quarks at the LHC.

I Further understand different aspects of QCD using machine learning, e.g., by
including gluons in the picture.

I Akin to the Gell-Mann–Okubo mass formula, attempt to find an analytic
expression for particle masses using symbolic regression, other methods for
interpretation of ML models.
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A second case of ML driven scientific discovery


