

Inverse Problems in Biology, Deconvolution of Mixed Signals in Spatial Transcriptomics Data, and How to Use Matrix Factorization for Nearly Everything

5

Cambridge, UK

535

Accelerate Science Winter School

03.02.2021 Aleksandrina Goeva Broad Institute of MIT and Harvard

The cell is the fundamental unit of life.

Cells are made out of **molecules**.

The molecules are encoded by **genes** (or made out of gene products).

Cells interact with each other to make tissues.

Tissues form organs.

Organs together account for organisms.

Organisms together make **populations** and **ecosystems**.

Today we will focus on **cells** and **tissues**.

How do people collect **data** from tissues and cells?

17th century

Using a microscope to look at parts of animals.

The birth of the terms **tissue** and **histology**.

1801 21 elementary tissues 1857 - present 4 tissue types

Neuron doctrine

Neuron doctrine

Neuron doctrine

The central dogma.

$MM \rightarrow M/ \rightarrow 0000$

DNA

mRNA

protein

Microarrays measure the transcripts of many genes from a bulk sample.

Next Generation Sequencing allows transcriptome-wide measurements from a bulk sample.

Single-cell RNAseq

Spatial transcriptomics

nature methods

Technology Feature | Published: 06 January 2021

Method of the Year: spatially resolved transcriptomics

Sofia, Bulgaria

Sofia, Bulgaria

Sofia, Bulgaria

Sofia, Bulgaria

Boston, MA

Spatial Transcriptomics Data

matrix of counts of mRNA abundance at each spatial probe

The tissue contains multiple cell types.

Cells in the tissue

Beads densely cover the plane.

Although the beads are approximately as small as the cells in the tissue, they are not necessarily centered on top of individuals cells.

Locations of Slide-seq beads

Each bead is a **mixture** of multiple cell types.

Slide-seq measurements

Given the Slide-seq observations, what are the cell types and the mixtures made out of?

Inverse problem

Forward problem

What is the true mixture?

The same thing expressed algebraically.

The same thing expressed geometrically.

Leverage prior knowledge to define a basis.

matrix of counts from an **annotated reference** single-cell RNAseq data

What is a good basis?

Written algebraically.

Written as a vector multiplication.

Written as a vector multiplication.

Matrix factorization.

Linear algebra notation.

 $X \approx WH$

How to find W and H?

$X \approx WH$ W, $H = \underset{\text{such that } W, H \ge 0}{X - WH} ||^2$

Non-negative Matrix Factorization (NMF).

 $W, H = argmin ||X - WH||^2$

such that $W, H \ge 0$

Deconvolution of the mixed spatial beads.

Finding the weights is doing projection.

Did it work? Validation?

genes

beads

Let's take a fresh look at our model.

 $X \approx WH$ $WH := \tilde{X}$

$$W, H = argmin ||X - WH||^2 = argmin ||X - \tilde{X}||$$

such that $W, H \ge 0$

such that $\tilde{X} = WH$ and $W, H \ge 0$

Without the constraints, it is exactly PCA!

$$WH := \tilde{X}$$

$$W, H = argmin ||X - WH||^2 = argmin ||X - \tilde{X}||^2$$

such that $W, H \ge 0$

 $X \approx WH$

such that $\tilde{X} = WH$ and $W, H \ge 0$

$$\tilde{X} = argmin ||X - \tilde{X}||^2$$
 PCA!

But is this a math model, or a stats model?

But is this a math model, or a stats model?

a **bilinear** model

$$\tilde{X} = argmin ||X - \tilde{X}||^2$$

But is this a math model, or a stats model?

$$\tilde{X} = argmin ||X - \tilde{X}||^2 \text{ is the}$$
maximum likelihood estimator
when $X_{ij} \sim \mathcal{N}(\tilde{X}_{ij}, \sigma^2)$

What if we want a **different likelihood**?

a **bilinear** model

$$\tilde{X}_{ij} = argmin \sum_{ij} e^{\tilde{X}_{ij}} - X_{ij} \tilde{X}_{ij} \text{ is the}$$

maximum likelihood estimator
when $\overrightarrow{X_{ij}} \sim \text{Poisson}(e^{\tilde{X}_{ij}})$

Focus on one observation.

 $X \approx \tilde{X}$

Dimensionality Reduction.

Representation Learning.

Dimensionality Reduction. Representation Learning.

min $d(X, \tilde{X})$

Which approach should we use?

Take-home messages:

- Incorporate prior domain knowledge into your models.
- Always try a simple baseline first.

Take-home messages:

- Incorporate prior domain knowledge into your models.
- Always try a simple baseline first.
- It is not always about finding the model that improves performance on a metric.
- Continual iteration between a team of people (including domain scientists, ML, and software engineers) is necessary.

Take-home messages:

- Incorporate prior domain knowledge into your models.
- Always try a simple baseline first.
- It is not always about finding the model that improves performance on a metric.
- Continual iteration between a team of people (including domain scientists, ML, and software engineers) is necessary.
- Disregard!

"You have to worry about your own work and ignore what everyone else is doing." - Richard Feynman, 1965

References

- Aviv Regev's talk LMRL NeurIPS 2019
- Method of the year 2021: spatially resolved transcriptomics
- My NMF primer at MIA
- NMF + NNLS python <u>code and tutorial on GitHub</u>
- Slide-seq <u>Science paper 2019</u>
- Generalized Bilinear Models, Jeff Miller's <u>MIA talk 2020</u>
- Feynman: <u>"Disregard!"</u>