Bayesian GP-LVM
|
|
In real scenarios, the `views’ are neither fully independent, nor fully correlated.
Shared models
Solution: Model shared and private information Virtanen et al. (n.d.),Ek et al. (2008a),Leen and Fyfe (2006),Klami and Kaski (n.d.),Klami and Kaski (2008),Tucker (1958)
Probabilistic CCA is case when dimensionality of \(\mathbf{Z}\) matches \(\mathbf{Y}^{(i)}\) (cf Inter Battery Factor Analysis Tucker (1958)).
\def\layersep{2cm}
\begin{center}
\begin{tikzpicture}[node distance=\layersep]
= [text width=4em, text centered] % Draw the input layer nodes / in {1,…,8} % This is the same as writing / in {1/1,2/2,3/3,4/4} (Y-) at (, 0) {\(y_\x\)};
% Draw the hidden layer nodes
\foreach \name / \x in {1,...,6}
\path[xshift=1cm]
node[latent] (X-\name) at (\x cm, \layersep) {$\latentScalar_\x$};
% Connect every node in the latent layer with every node in the
% data layer.
\foreach \source in {1,...,6}
\foreach \dest in {1,...,8}
\draw[->] (X-\source) -- (Y-\dest);
% Annotate the layers
\node[annot,left of=X-1, node distance=1cm] (ls) {Latent space};
\node[annot,left of=Y-1, node distance=1cm] (ds) {Data space};
\end{tikzpicture} \end{center}
\def\layersep{2cm}
\begin{center}
\begin{tikzpicture}[node distance=\layersep]
= [text width=4em, text centered] % Draw the input layer nodes / in {1,…,4} % This is the same as writing / in {1/1,2/2,3/3,4/4} (Y-) at (, 0) {\(y^{(1)}_\x\)};
\foreach \name / \x in {1,...,4}
% This is the same as writing \foreach \name / \x in {1/1,2/2,3/3,4/4}
\node[obs] (Z-\name) at (\x+5, 0) {$\dataScalar^{(2)}_\x$};
% Draw the hidden layer nodes
\foreach \name / \x in {1,...,6}
\path[xshift=2cm]
node[latent] (X-\name) at (\x cm, \layersep) {$\latentScalar_\x$};
% Connect every node in the latent layer with every node in the
% data layer.
\foreach \source in {1,...,6}
\foreach \dest in {1,...,4}
\draw[->] (X-\source) -- (Y-\dest);
\foreach \source in {1,...,6}
\foreach \dest in {1,...,4}
\draw[->] (X-\source) -- (Z-\dest);
% Annotate the layers
\node[annot,left of=X-1, node distance=1cm] (ls) {Latent space};
\node[annot,left of=Y-1, node distance=1cm] (ds) {Data space};
\end{tikzpicture} Separate ARD parameters for mappings to \(\mathbf{Y}^{(1)}\) and \(\mathbf{Y}^{(2)}\). \end{center}