Week 0: Bringing it Together
[Powerpoint][reveal]
Abstract: In this final session we bring together the different lessons learned about the new wave of technologies.
How are we making computers do the things we used to associated only with humans? Have we made a breakthrough in understanding human intelligence?
While recent achievements might give the sense that the answer is yes, the short answer is that we are nowhere near. All we’ve achieved for the moment is a breakthrough in emulating intelligence.
What is Intelligence?
[edit]
One challenge with the word intelligence is it means many different things to different people. My own definition of intelligence is the use of information to achieve goals more efficiently. Where information is measured in Shannon terms, and efficiency is measured in terms of use of resource, typically available energy or maybe time. The definition appeals to me because it brings about a connection between the major historic revolutions, which have been about energy, and the current changes which focus more on information. However, the definition does not specify the goal. Some prefer to try and incorporate the goal in their definition of intelligence, and that goals should be somehow emergent from intelligence. For complex tasks sub-goals are certainly emergent, but I don’t seek to incorporate a global goal in my own definition.
So where are we in terms of intelligence? There is certainly an information revolution going on, and it is causing disruption across many industries. But what we are saying about machine learning and artificial inteligence has been said before in relation to the invention of sillicon chips. I gave a version of this talk once at the BBC, and Bill Thompson was kind enough to share with me the archive of “Silicon Factor”, a series of three programs broadcast in 1980 exploring the “microelectronics revolution”. There is a remarkable similarity to everything the experts say in these programs and what experts say about AI today. And of course, these experts were right, jobs have changed, industry is different and we are still deep in the micro-electronics revolution. However, these changes do not happen overnight, those broadcasts were made nearly forty years ago. The “Fourth Industrial Revolution” is merely a continuation of an ongoing revolution in information, one which was triggered by the Silicon Factor, continued by the internet and has been given further momentum by mobile communications.
With a word like intelligence, we can’t just think about our own definition of intelligence, but we should also take into account public understanding of the word. For many people intelligence is something specific to humans, and as a result what the term refers to evolves. Artificial intelligence is a very emotive term, because it feels close to us, it makes us think that computers are doing things like us. As a result it is also a shifting definition, it comes to me “intelligence is the stuff I can do that computers can’t”. This lends a narcissistic element to our fascination with artificial intelligence, because it is also a fascination with ourselves.
A hundred years ago computers were human beings, often female, who conducted repetitive mathematical tasks for the creation of mathematical tables such as logarithms. Our modern digital computers were originally called automatic computers to reflect the fact that the intelligence of these human operators had been automated. But despite the efficiency with which they perform these tasks, very few think of their mobile phones or computers as intelligent.
Cybernetics and the Ratio Club
[edit]
Norbert Wiener launched last century’s first wave of interest in emulation of intelligence with his book “Cybernetics”. The great modern success that stemmed from that work is the modern engineering discipline of Automatic Control. The technology that allows fighter jets to fly. These ideas came out of the Second World War, when researchers explored the use of radar (automated sensing) and automatic computation for decryption of military codes (automated decision making). Post war a body of researchers, including Alan Turing, were seeing the potential for electronic emulation of what had up until then been the preserve of an animallian nervous system.
Artificial intelligence is a badly defined term. Successful deployments of intelligent systems are common, but normally they are redefined to be non-intelligent. My favourite example is the Centrifugal governor. Applied to the Steam Engine by Boulton and Watt and immortalised in the arms of the statue of “Science” on the Holborn viaduct in London, the centrifugal governor automatically regulated the speed of a steam engine, closing the inlet valve progressively as the engine ran faster. It did the job that an intelligent operator used to have to do, but few today would describe it as “artificial intelligence”.
The current revolution in AI is being driven by machine learning. Machine learning is an approach to prediction which is data driven. It is not the first approach to focus on data, the statistical sciences have combined models with data for a number of years. But machine learning has taken a particular focus on improving the quality of prediction, whereas statistical sciences have traditionally focussed more on explaination. Machine learning is giving us information processing engines that are equivalent to the steam engines of the industrial revolution.
What is Machine Learning?
[edit]
Machine learning allows us to extract knowledge from data to form a prediction.
\[\text{data} + \text{model} \stackrel{\text{compute}}{\rightarrow} \text{prediction}\]
A machine learning prediction is made by combining a model with data to form the prediction. The manner in which this is done gives us the machine learning algorithm.
Machine learning models are mathematical models which make weak assumptions about data, e.g. smoothness assumptions. By combining these assumptions with the data, we observe we can interpolate between data points or, occasionally, extrapolate into the future.
Machine learning is a technology which strongly overlaps with the methodology of statistics. From a historical/philosophical view point, machine learning differs from statistics in that the focus in the machine learning community has been primarily on accuracy of prediction, whereas the focus in statistics is typically on the interpretability of a model and/or validating a hypothesis through data collection.
The rapid increase in the availability of compute and data has led to the increased prominence of machine learning. This prominence is surfacing in two different but overlapping domains: data science and artificial intelligence.
From Model to Decision
[edit]
The real challenge, however, is end-to-end decision making. Taking information from the environment and using it to drive decision making to achieve goals.
Artificial vs Natural Systems
[edit]
Let’s take a step back from artificial intelligence, and consider natural intelligence. Or even more generally, let’s consider the contrast between an artificial system and an natural system. The key difference between the two is that artificial systems are designed whereas natural systems are evolved.
Systems design is a major component of all Engineering disciplines. The details differ, but there is a single common theme: achieve your objective with the minimal use of resources to do the job. That provides efficiency. The engineering designer imagines a solution that requires the minimal set of components to achieve the result. A water pump has one route through the pump. That minimises the number of components needed. Redundancy is introduced only in safety critical systems, such as aircraft control systems. Students of biology, however, will be aware that in nature system-redundancy is everywhere. Redundancy leads to robustness. For an organism to survive in an evolving environment it must first be robust, then it can consider how to be efficient. Indeed, organisms that evolve to be too efficient at a particular task, like those that occupy a niche environment, are particularly vulnerable to extinction.
This notion is akin to the idea that only the best will survive, popularly encoded into an notion of evolution by Herbert Spencer’s quote.
Survival of the fittest
Herbet Spencer, 1864
Darwin himself never said “Survival of the Fittest” he talked about evolution by natural selection.
Non-survival of the non-fit
Evolution is better described as “non-survival of the non-fit”. You don’t have to be the fittest to survive, you just need to avoid the pitfalls of life. This is the first priority.
So it is with natural vs artificial intelligences. Any natural intelligence that was not robust to changes in its external environment would not survive, and therefore not reproduce. In contrast the artificial intelligences we produce are designed to be efficient at one specific task: control, computation, playing chess. They are fragile.
The first rule of a natural system is not be intelligent, it is “don’t be stupid”.
A mistake we make in the design of our systems is to equate fitness with the objective function, and to assume it is known and static. In practice, a real environment would have an evolving fitness function which would be unknown at any given time.
You can also read this blog post on Natural and Artificial Intelligence..
The first criterion of a natural intelligence is don’t fail, not because it has a will or intent of its own, but because if it had failed it wouldn’t have stood the test of time. It would no longer exist. In contrast, the mantra for artificial systems is to be more efficient. Our artificial systems are often given a single objective (in machine learning it is encoded in a mathematical function) and they aim to achieve that objective efficiently. These are different characteristics. Even if we wanted to incorporate don’t fail in some form, it is difficult to design for. To design for “don’t fail”, you have to consider every which way in which things can go wrong, if you miss one you fail. These cases are sometimes called corner cases. But in a real, uncontrolled environment, almost everything is a corner. It is difficult to imagine everything that can happen. This is why most of our automated systems operate in controlled environments, for example in a factory, or on a set of rails. Deploying automated systems in an uncontrolled environment requires a different approach to systems design. One that accounts for uncertainty in the environment and is robust to unforeseen circumstances.
Today’s Artificial Systems
The systems we produce today only work well when their tasks are pigeonholed, bounded in their scope. To achieve robust artificial intelligences we need new approaches to both the design of the individual components, and the combination of components within our AI systems. We need to deal with uncertainty and increase robustness. Today, it is easy to make a fool of an artificial intelligent agent, technology needs to address the challenge of the uncertain environment to achieve robust intelligences.
However, even if we find technological solutions for these challenges, it may be that the essence of human intelligence remains out of reach. It may be that the most quintessential element of our intelligence is defined by limitations. Limitations that computers have never experienced.
Claude Shannon developed the idea of information theory: the mathematics of information. He defined the amount of information we gain when we learn the result of a coin toss as a “bit” of information. A typical computer can communicate with another computer with a billion bits of information per second. Equivalent to a billion coin tosses per second. So how does this compare to us? Well, we can also estimate the amount of information in the English language. Shannon estimated that the average English word contains around 12 bits of information, twelve coin tosses, this means our verbal communication rates are only around the order of tens to hundreds of bits per second. Computers communicate tens of millions of times faster than us, in relative terms we are constrained to a bit of pocket money, while computers are corporate billionaires.
Our intelligence is not an island, it interacts, it infers the goals or intent of others, it predicts our own actions and how we will respond to others. We are social animals, and together we form a communal intelligence that characterises our species. For intelligence to be communal, our ideas to be shared somehow. We need to overcome this bandwidth limitation. The ability to share and collaborate, despite such constrained ability to communicate, characterises us. We must intellectually commune with one another. We cannot communicate all of what we saw, or the details of how we are about to react. Instead, we need a shared understanding. One that allows us to infer each other’s intent through context and a common sense of humanity. This characteristic is so strong that we anthropomorphise any object with which we interact. We apply moods to our cars, our cats, our environment. We seed the weather, volcanoes, trees with intent. Our desire to communicate renders us intellectually animist.
But our limited bandwidth doesn’t constrain us in our imaginations. Our consciousness, our sense of self, allows us to play out different scenarios. To internally observe how our self interacts with others. To learn from an internal simulation of the wider world. Empathy allows us to understand others’ likely responses without having the full detail of their mental state. We can infer their perspective. Self-awareness also allows us to understand our own likely future responses, to look forward in time, play out a scenario. Our brains contain a sense of self and a sense of others. Because our communication cannot be complete it is both contextual and cultural. When driving a car in the UK a flash of the lights at a junction concedes the right of way and invites another road user to proceed, whereas in Italy, the same flash asserts the right of way and warns another road user to remain.
Our main intelligence is our social intelligence, intelligence that is dedicated to overcoming our bandwidth limitation. We are individually complex, but as a society we rely on shared behaviours and oversimplification of our selves to remain coherent.
This nugget of our intelligence seems impossible for a computer to recreate directly, because it is a consequence of our evolutionary history. The computer, on the other hand, was born into a world of data, of high bandwidth communication. It was not there through the genesis of our minds and the cognitive compromises we made are lost to time. To be a truly human intelligence you need to have shared that journey with us.
Of course, none of this prevents us emulating those aspects of human intelligence that we observe in humans. We can form those emulations based on data. But even if an artificial intelligence can emulate humans to a high degree of accuracy it is a different type of intelligence. It is not constrained in the way human intelligence is. You may ask does it matter? Well, it is certainly important to us in many domains that there’s a human pulling the strings. Even in pure commerce it matters: the narrative story behind a product is often as important as the product itself. Handmade goods attract a price premium over factory made. Or alternatively in entertainment: people pay more to go to a live concert than for streaming music over the internet. People will also pay more to go to see a play in the theatre rather than a movie in the cinema.
In many respects I object to the use of the term Artificial Intelligence. It is poorly defined and means different things to different people. But there is one way in which the term is very accurate. The term artificial is appropriate in the same way we can describe a plastic plant as an artificial plant. It is often difficult to pick out from afar whether a plant is artificial or not. A plastic plant can fulfil many of the functions of a natural plant, and plastic plants are more convenient. But they can never replace natural plants.
In the same way, our natural intelligence is an evolved thing of beauty, a consequence of our limitations. Limitations which don’t apply to artificial intelligences and can only be emulated through artificial means. Our natural intelligence, just like our natural landscapes, should be treasured and can never be fully replaced.
Engineering Systems Design
Engineering systems design is a major component of all engineering disciplines, in each domain the details differ, but there is a common theme. The aim is to achieve your objective with the minimal use of resources to do the job. This provides efficiency. An engineering designer imagines a solution that requires the minimal set of components to achieve a given result.
For example, a water pump has a single route through the pump, the mechanism of the pump involves a single non-redundant set of linkages. This minimizes the resources needed for manufacturing the pump.
Don’t Fail
The first criterion of natural intelligence is don’t fail. This is in contrast to the mantra for artificial systems which is to be more efficient. Artificial systems are typically given a single objective (in machine learning it is encoded in a mathematical function). The aim is to achieve that objective efficiently.
Even if we wanted to incorporate don’t fail in some form, it is surprisingly difficult to design for. You would have to consider every which way in which things can go wrong. If you miss one you will fail. These cases are sometimes called corner cases.
In an uncontrolled environment there are corners everywhere. It is difficult to imagine everything that can happen. As a result most of our automated systems operate in controlled environments, e.g. in a factory, on a set of rails.
We can imagine a driverless car operating on a highway (a more controlled environment), but it is harder to imagine how one would operate in the city centres of Naples, Kampala or Delhi (less controlled environments).
Deployment in uncontrolled environments may require a different approach to systems design, one that accounts for uncertainty in the environment and one that is robust to unforeseen circumstances.
Peppercorns
[edit]
Asking Siri “What is a trillion to the power of a thousand minus one?” leads to a 30 minute response1 consisting of only 9s. I found this out because my nine year old grabbed my phone and did it. The only way to stop Siri was to force closure. This is an interesting example of a system feature that’s not a bug, in fact it requires clever processing from Wolfram Alpha. But it’s an unexpected result from the system performing correctly.
This challenge of facing a circumstance that was unenvisaged in design but has consequences in deployment becomes far larger when the environment is uncontrolled. Or in the extreme case, where actions of the intelligent system effect the wider environment and change it.
These unforseen circumstances are likely to lead to need for much more efficient turn-around and update for our intelligent systems. Whether we are correcting for security flaws (which are bugs) or unenvisaged circumstantial challenges: an issue I’m referring to as peppercorns. Rapid deployment of system updates is required. For example, Apple have “fixed” the problem of Siri returning long numbers.
The challenge is particularly acute because of the scale at which we can deploy AI solutions. This means when something does go wrong, it may be going wrong in billions of households simultaneously.
You can also check this blog post on Decision Making and Diversity. and this blog post on Natural vs Artifical Intelligence..
A Man and His Dog
[edit]
This picture is from the MARS 2018 conference, it shows Jeff Bezos with SpotMini, Boston Dynamics mini robot dog. It resonates with me in two ways, first of all, despite the life like nature of the dog, it is not using any ‘modern AI’ at all, Marc Raibert is proud of the fact that his robots are using complex cascades of traditional controllers. This allows them to verify performance of the individual controllers which are switched in to different domains.
Classical control emerged from the first wave of work on intelligent systems, a feild known as cybernetics. But it has been redefined to be not an AI technology.
Yet, we can see the aims of control engineering in the field of reinforcement learning. There is large overlap between the fields. A major difference is that reinforcement learning researchers accept the fact that they may be unable to establish guarantees around performance that can be proven mathematically. Mathematica guarantees are a mainstay of the field of control which evolved in an era before large scale compute and data was available.
Secondly, the robot dog is missing a major characteristic of our intelligence, one which real dogs do show, empathy and an ability to model us and who we are. The most complex thing in our environment is other humans, and perhaps the most important facet of our intelligence is our social intelligence. Our ability to model other humans. Something that our real-world companions, our dogs and cats, exhibit better than our artificial companions.
The mythology around intelligence centres on an idea of an intelligence that is better than us in all aspects. But what if some aspects of our intelligence, such as our emotional intelligence, are a consequence of our limitations? What if it is not possible to be emotionally intelligent to the same degree as a human being without experiencing the same limitations as that human being. One obvious limitation is death, but there are other limitations including constraints on our ability to communicate our thoughts.
The Promise of AI
[edit]
The promise of the fourth industrial revolution is that this wave of automation is the first wave of automation where the machines adapt to serve us rather than us adapting to serve the machine.
That promise will remain unfulfilled with our current approach to systems design.
Five AI Myths
[edit]
- AI will be the first wave of automation that adapts to us.
- Hearsay data has significant value.
- The big tech companies have the landscape all ‘sewn up’
- ‘data scientists’ will come and solve all problems.
- The normal rules of business don’t apply to AI.
The five AI myths are patterns of thinking I’ve identified amoung those that are trying to take advantage of artificial intelligence to deploy new products.
The first myth is the “promise of AI” myth, that AI will be the first wave of machine-based automation that adapts to us, rather than us having to adapt to it. The reality is that we haven’t yet created machines that are as flexible as humans, the automation we are producing is still ‘fragile’, in that if it encounters unforeseen circumstances it breaks. This is a consequence of the way we design systems, flexible natural systems such as ourselves are evolved, not designed. And evolved systems have a first priority to ‘not fail’. What we think of us ‘common sense’ in the human is in reality a set of heuristics that prevent us doing stupid things in the name of achieving a goal. Our AI systems don’t exhibit this.
The second myth is that there is value in ‘hearsay data’. Hearsay data is data that people have heard exists, so they say it exists (See this blog onblog post on Data Readiness Levels. (Lawrence, 2017). The failure to understand the importance of data quality is resulting in unrealistic projects staffed by people with the wrong skill sets. Most decision makers don’t understand that implementation of a machine learning model is relatively trivial. But preparation of the data set and the data ecosystem around the model is extremely difficult. So the wrong investments are made, millions spent on recruiting machine learning PhDs and minimal spend on data infrastructure and systems for data auditing.
The third myth is that platform effects mean that there is no room for knew innovation in AI. Three factors will prevent the platforms dominating in the long term. Firstly, they are not agile, their approach to AI software development is grounded in the world that pre-dates wide availability of machine learning systems. Agile software development needs revisiting in the context of machine learning and this form of cultural change is difficult to achieve. In practice, these companies are larger than they need to be to deliver their services because they can afford to employ people to handle operational load. Newer agile companies will develop a better culture around data and machine learning. One that requires less operational overhead. This doesn’t just reduce costs, but it increases speed of movement and develops better understanding of the underlying systems. See this blog on blog post on The 3Ds of Machine Learning Systems Design..
The fourth myth is that soon there will be a wave of Data Scientists who will be equipped to enter companies and resolve their problems around data and AI. The mistake here is to assume that these graduates will have been trained in the necessary skills to do data science within a company. In fact, Universities will naturally focus on algorithms and models, because that material is teachable. Much more important is systems thinking and data wrangling. Processes to ensure that data is actionable. The weakness of senior decision makers, including CIOs and CTOs is that they don’t have a deep understanding of the technology, so they don’t perform critical thinking in this space. It’s a problem that can be deferred and solved by a mythical set of experts who will soon be arriving. In reality, domain expertise is key to successful data science, and bridging existing expertise with an understanding of the new landscape is far more important to delivering succesful systems.
The final myth is perhaps the most perniscious. It involves a suspension of normal business skepticism where AI is concerned. It may arise from the use of the term AI, which implies intelligence. If these systems were really ‘intelligent’, in the way a human is intelligent, plus if they had the skills of a computer, that really would be revolutionary. However, that’s not what’s happening, and won’t happen in the foreseeable future (i.e. on timelines that matter to business). In reality this is an evolution of existing technology, and it has the ususual challenges of adpotion that existing technologies have. The challenge for decision makers is how to assimilate the implications of this new technology within their business skill set. This means familiarisation, and doing courses etc isn’t good enough. Senior business leaders need to take time out working closely with the technology in their own environments to better calibrate their understanding of its strengths and weaknesses.
Recommendation: How to bust to these myths? The primary recommendation for businesses is that they start pilot projects which have executive sponsorship. They involve the CTO (or CIO or CDO), a technical ‘data science’ expert and a target domain area. Instead of feigning knowledge in this space, each admits their own ignorance of the other domains, and starts from scratch. Egos are left out of the room. The small pilot project is explored and delivered with the real challenges being noted. In this way each of the individuals will learn quickly where the pitfalls are.
One challenge is that for most projects the data will be too poor to even conduct the pilot. However, one data source that is consistently of good quality across companies is financial data. So a further suggestion is to initially focus on collaborating with the CFO and focus on financial forecasting (or similar). If the CFO, CTO and CEO gain a better understanding of the capabilities of data science, then the company can begin to turn around its systems and culture focussing on the important changes, making calibrated changes, rather than reacting to the sensationalism around AI.
Importantly, don’t go all in. Major companies are susceptible to what I call ‘(Grand Old) Duke of York Effect’, march 10,000 people to the top of the hill and march them down again. Command and control is not the right response to an uncertain and environment. Don’t think like regular troops, think like special forces, small groups with specialist expertise that are empowered to think independently and explore the landscape. Find which hill to march up, before committing significant resource.
Thanks!
For more information on these subjects and more you might want to check the following resources.
- twitter: @lawrennd
- podcast: The Talking Machines
- newspaper: Guardian Profile Page
- blog: http://inverseprobability.com
References
Lawrence, N.D., 2017. Data readiness levels. arXiv.
Apple has fixed this issue so that Siri no longer does this.↩︎