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1 The world is 
non-stationary



When we build and deploy machine 
learning algorithms, we assume that 
our problem domain is fixed and that 
all variability is captured in a static 
dataset or learning environment. 

This is rarely true. For example:

● Health
● Robotics
● Language

The world is non-stationary.
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Deep Learning Big Data

● Deep Learning is powerful because the 
models readily scale to fit large 
datasets.

● Supported by large-scale compute, and 
end-to-end optimization.

● Optimization is gradient-based, which 
assumes that the dataset is balanced, 
shuffled and randomly sampled during 
training (i.i.d. - more on this later).

● The result is that deep learning models 
are inefficient at learning, and may 
suffer from catastrophic forgetting, 
interference, and other failure modes if 
trained in non-stationary settings

Deep Learning is optimised for 
static, large-scale datasets



Imagine learning high school biology by 
sampling pages at random.

Humans don’t learn well from 
randomly sampled data 



Imagine learning all your high school 
subjects by sampling one page at 
random from every textbook.

Humans don’t learn well from 
randomly sampled data 



1. Applications that continually adapt to 
track a changing problem, or specialize 
to a domain (e.g. epidemiological models, 
language specialization)

2. Robots that add skills over time, 
becoming more capable.

3. AGI - continual learning is considered 
to be requisite to achieve human-level 
intelligence1

4. Dramatically more efficient Deep 
Learning methods, even in stationary 
settings.

What could be gained by enabling 
Deep Learning to learn sequentially?

1. Hassabis D. et al., Neuroscience-inspired artificial intelligence. Neuron 2017



2 Defining 
Continual Learning



The learning environment is non-stationary, divided into a set of tasks that need to be 
completed sequentially. 

There are many variations:

● task transitions (smooth or discrete); 
● task length and repetition; 
● task type (such as unsupervised, supervised, or reinforcement learning);
● or it may not have well-defined tasks

This is differentiated from Curriculum Learning, in which the sequence of tasks is controlled by 
the learner (or a beneficent teacher).

The Continual Learning Problem



Characterizing continual learning solutions is more challenging: there are many 
desiderata and they are often contradictory or competing.

1. Minimal access to previous tasks. The model does not have infinite storage for previous 
experience and, crucially, it can not interact with previously seen tasks.

2. Minimal increase in model capacity and computation. The approach must be scalable: it 
cannot add a new model for each subsequent task.

3. Fast adaptation and recovery. The model should be capable of fast adaptation to novel 
tasks or domain shifts and of fast recovery when presented with past tasks.

Continual Learning Solutions



Characterizing continual learning solutions is more challenging: there are many 
desiderata and they are often contradictory or competing.

4. Minimizing catastrophic forgetting and interference. 
Training on new tasks should not significantly 
reduce performance on previously learned tasks.

Continual Learning Solutions

Illustration of catastrophic forgetting 



Characterizing continual learning solutions is more challenging: there are many 
desiderata and they are often contradictory or competing.

5. Maintaining plasticity. The model should be 
able to keep learning effectively as new 
tasks are observed.
 
(Failure often occurs because of 
regularization or lack of model capacity.)

Continual Learning Solutions

Illustration of declining plasticity, or 
learning intransigence.



Characterizing continual learning solutions is more challenging: there are many 
desiderata and they are often contradictory or competing.

6. Maximizing forward and backward transfer. Learning a task should improve related tasks, 
both past and future, in terms of both learning efficiency and performance

Continual Learning Solutions

Illustration of forward transfer. Illustration of forwards and backwards transfer.



Contradictions, dilemmas, and trade-offs

Some of the aforementioned desiderata become competing objectives when optimized in a 
single model:

● Maintaining perfect recall (by forgetting nothing) in a fixed-capacity model is impossible given 
an arbitrarily long sequence of tasks. 

○ This dilemma motivates fast recovery, which allows forgetting if previous performance 
levels can be recovered with a minimal amount of new experience. 

● Forward (and backward) transfer contrasts with the ability to perfectly recall previous tasks. 

● Any solution needs to balance competing needs. But what constitutes an optimal trade-off? How 
much should the model remember and how much is the model allowed to grow? 

● Real-world problem domains resolve these dilemmas, however.



3 Tug-of-war 
learning dynamics
  and the I.I.D. assumption



● Continual Learning is a huge challenge for deep learning 
models because of gradient-based optimization. 

● Gradient-based learning is effective and cheap, the de rigeur 
method for training neural networks for close to 4 decades.

● However, a close look at the learning dynamics reveals a 
problem.

● Each training sample produces a gradient for each parameter 
in the network that votes to make the parameter bigger or 
smaller. 

● In a mini-batch, a gradient is produced by each sample in 
parallel and they are summed to decide the winning direction.

● The result is a tug-of-war over the direction of change of 
each parameter.
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Gradient-based optimization and tug-of-war dynamics

● Why is this important?

● The tug-of-war dynamics means that data must be i.i.d. - independent and identically 
distributed - for parameters to reach an equilibrium and learning to converge.

● If they are not i.i.d., for instance in continual learning settings, then catastrophic forgetting 
results: the unopposed gradients of Task 2 cause the parameters to rapidly change.

● Thus all tasks must be present in expectation for learning to progress. This is very 
inefficient: in an N-way tug-of-war, each parameter will still only change in one direction.
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Gradient-based optimization and tug-of-war dynamics

How efficient is gradient-based optimization for stationary learning? Are all parts of the dataset 
learned at the same speed? The answer is No.

● Most examples in a dataset are learned fast and then multiple repetitions are needed to 
learn remaining examples.1,2 However, the tug-of-war dynamics require that all examples 
are present, even the easier ones, which wastes computational resources. 

1. Devansh A. et al. A closer look at memorization in deep networks, ICML 2017; 
2. Chang H.-S. et al., Active bias: training more accurate neural networks by emphasizing high variance samples, NeurIPS 2017
3. Raposo D. et al. Discovering objects and their relations from entangled scene representations. arXiv 2017
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Gradient-based optimization and tug-of-war dynamics

How efficient is gradient-based optimization for stationary learning? Are all parts of the dataset 
learned at the same speed? The answer is No.

● Most examples in a dataset are learned fast and then multiple repetitions are needed to 
learn remaining examples.1,2 However, the tug-of-war dynamics require that all examples 
are present, even the easier ones, which wastes computational resources. 

● Recent work has shown empirically that concepts are discovered sequentially, even if they 
are simultaneously present in the data3,4.

● Therefore, even if tasks are equally complex and presented simultaneously, the model 
might still learn them sequentially, thus losing efficiency due to the tug-of-war dynamics.

● Continual learning could unleash unprecedented learning efficiency, even in stationary 
learning settings.
1. Devansh A. et al. A closer look at memorization in deep networks, ICML 2017; 

2. Chang H.-S. et al., Active bias: training more accurate neural networks by emphasizing high variance samples, NeurIPS 2017
3. Raposo D. et al. Discovering objects and their relations from entangled scene representations. arXiv 2017
4. Schaul, T et al, Ray Interference: Source of Plateaus in Deep Reinforcement Learning, arxiv, 2019



4 Maintaining plasticity
Learning dynamics: neural networks may lose 
plasticity at steady-state.



Learning for neural networks  seems to be well behaved ...

Misbehaved learning expected from 
nonlinear system

● Gradient based learning is local, hence  susceptible 
to converge to bad local minima

● This does not happen in practice, furthermore 
solutions found by learning seem to generalise

● Leaving the illusion of a robust black box machinery 
that is able to extract information from data



… but signs are that this is dependent on initial conditions 
and assumptions of the training regime

● One big step to get neural networks to train was better initialisation, larger 
models and better activation functions and architectures.

● Bad local minima do exist (e.g. Swirzcz et al. 2017) as well as strangely 
shaped loss surfaces. (e.g. Czarnecki et al. 2019)

● Initialisation is vital to convergence, and to 
enable the system to learn. 
(e.g. De & Smith 2020)



Learning dynamics: neural networks may lose plasticity at 
steady-state.

 What happens in a lifelong learning system? 

● One can not control initialisation anymore

● Early signs (e.g. Ash et al 2020) suggest that this can bias 
the learning process towards memorisation rather than 
learning

● In an extreme case, it can harm optimisation, where the 
system does not suffer from catastrophic forgetting, but 
rather inability to learn



4 Continual Learning
Solutions



Continual learning can be understood as a set of approaches to stabilize the tug-of-war learning 
dynamics over a sequence of tasks without having the previous tasks available. Interestingly, 
most CL approaches are biologically inspired.

Four solution spaces:

1. Gradient-based approaches: change the gradients or use regularization to directly 
manage the tug-of-war.

2. Modular approaches: Use architecture design or sparsity to allow for specialized task 
parameters without impacting others.

3. Memory approaches: Use memory (replay, episodic, generative) to create proxy samples 
of previous tasks.

4. Meta-Learning: Instead of designing one, learn an inductive bias from data to solve 
continual learning. 

Looking for solutions



Gradient-based solutions
    a.k.a., fix the problem at the source

protecting important gradients 



Gradient-based solutions
    a.k.a., fix the problem at the source

● Align new gradients with old tasks
○ Gradient Episodic Memory, Lopez-Paz 

2017

● Use regularization to change the 
plasticity of some parameters 
(identifying which ones, and how much 
to regularize, is the hard part) 
○ Elastic Weight Consolidation, 

Kirkpatrick 2017
○ Synaptic Intelligence, Zenke 2017

● Use distillation to mitigate parameter 
drift
○ Learning Without Forgetting, Li 2017

protecting important gradients 

EWC: Elastic Weight Consolidation



Modularity and sparsity

modular architectures

Modularity offers a middle ground between 
a monolithic architecture and an ensemble.



Modularity offers a middle ground between 
a monolithic architecture and an ensemble.

● Add on new capacity for new tasks 
(requires task boundaries)
○ Progressive Neural Nets, Rusu 2016
○ Dynamically Expandable Nets, Yoon 

2018
○ Neurogenesis deep learning, Draelos 

2017
○ Reinforced Continual Learning, Xu 2018

● Compress or prune to scale further
○ Progress & Compress, Schwarz 2018
○ Continual Learning via neural pruning, 

Golkar 2019

Modularity and sparsity

modular architectures



● Begin with a very large network and 
partition it by channeling new task 
gradients to unused parts 
○ PathNet, Fernando 2017
○ Conceptors, He 2017
○ Random Path Selection, Rajasegaran 

2019
● Use sparsity (in activations or 

gradients) to limit the extent and 
impact of learning updates.
○ Selfless Sequential learning, Aljundi 

2018

Modularity and sparsity

modular architectures

PathNet module reuse



Memory-based solutions 
for Continual Learning

neural memory 



● Simple but effective: Replay (saving a buffer 
of past experience) and Episodic memory 
(also doing inference on the past experience)

○ Catastrophic forgetting, rehearsal and 
pseudorehearsal, Robins 1995

○ Experience replay for CL, Rolnick 2019
○ Episodic memory in lifelong learning, d’Autume 

2019
○ Memory-based Parameter Adaptation, 

Sprechmann 2018

● More scalable: use exemplars or memory 
vectors in a sparse memory setting

○ iCaRL, Rebuffi 2017
○ Using hindsight to anchor.., Chaudhry 2020

● More biologically plausible: use generative 
models to remove storage requirements

○ Deep generative replay, Shin 2017
○ Continual unsupervised representation learning 

(CURL), Rao 2019

Memory-based solutions 
for Continual Learning

neural memory 

Memory-based Parameter Adaptation 
(MbPA)



Perhaps rather than hand-engineering the 
architecture and update rule, we can learn a good 
inductive bias for continual learning.

● Basic idea: 
○ ‘inner loop’ optimizes for specific tasks, 
○ ‘outer loop’ optimizes over a set of tasks

Meta-Learning
Discovering inductive biases for CL
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Perhaps rather than hand-engineering the 
architecture and update rule, we can learn a good 
inductive bias for continual learning.

● Basic idea: 
○ ‘inner loop’ optimizes for specific tasks, 
○ ‘outer loop’ optimizes over a set of tasks

● For CL, the outer loop optimizes for 
performance or knowledge retention in 
non-stationary settings 

○ Warped Gradient Descent, Flennerhag 2020
○ Deep online learning via meta-learning, 

Nagabandi 2019
○ Learning to Continually Learn, Beaulieu 2020

● No free lunch however - Meta-learning 
requires careful design task distribution and 
is computationally demanding.

Meta-Learning
Discovering inductive biases for CL

Meta-Learning

Warped Gradient Descent



Thank you!

Summary
● Solving continual learning is important: for adaptable 

applications, for human-level AGI, and for efficient deep learning. 

● An overlooked challenge is in the i.i.d. assumption that results 
from tug-of-war learning dynamics in gradient-based 
optimization.

● Another under-researched area is the behaviour of neural nets 
at steady state, rather than at initialisation or convergence.

● There are many possible research directions, from optimization 
to modularity and sparsity, to memory and meta-learning.


