Christian Cabrera

University of Cambridge

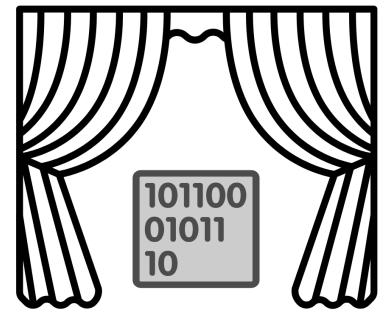
06/11/2024

• Data Science Challenges

Data Science Challenges

• Bias

Systematic tendency in which methods used to gather data and compute statistics generate inaccurate depictions of reality.



Source: https://mlatcl.github.io/advds/lectures/04-02-ai-anddata-science.html

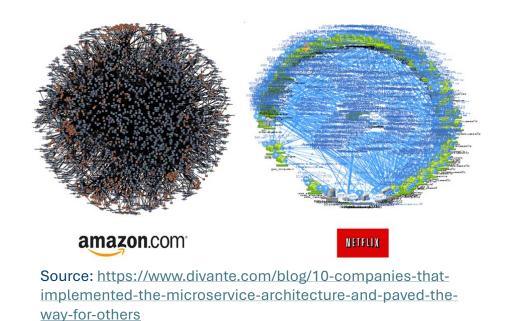
Challenges our ability to deploy safe and effective solutions:

- Alignment
- Fairness
- Inclusiveness

Data Science Challenges

• Complexity

Systems are highly dynamic and have grown in size. The data processing pipelines involve hundreds or thousands of components.



Challenges our technical ability to deploy and maintain our solutions:

- Sustainability
- Maintainability

- Data Science Challenges
 - Intellectual Debt

Black-box components make systems hard to understand and threaten human control. We know they components work but do not know how.

Source: (Zittrain-2019) https://medium.com/berkman-klein-center/fromtechnical-debt-to-intellectual-debt-in-aie05ac56a502c

Challenges our ability to explain our solutions:

- Interpretability
- Accountability

Why are these important?

- Data Science Challenges
 - Bias
 - Complexity
 - Intellectual Debt

Source: https://www.freepik.com/free-photos-vectors/society

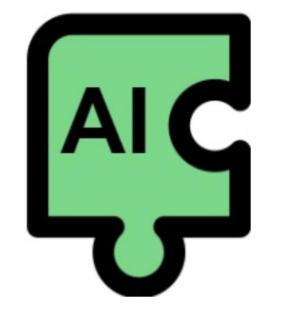
Why are these important?

• Society has challenging problems...

Source: https://www.freepik.com/free-photos-vectors/society

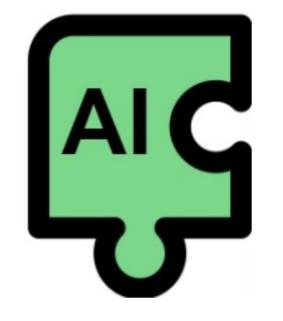
• Focus on technology

• Focus on technology

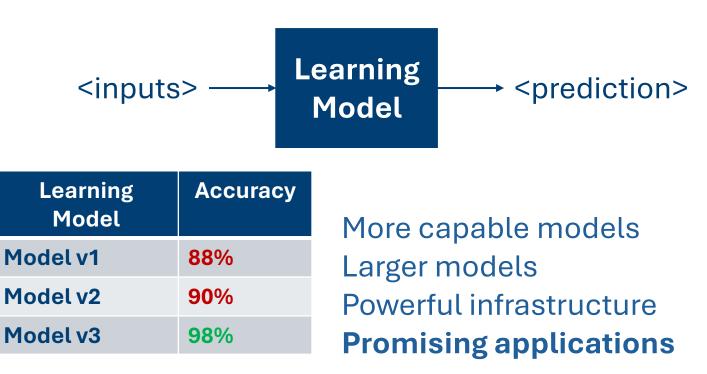


For example, we have a learning model that generates predictions from inputs:

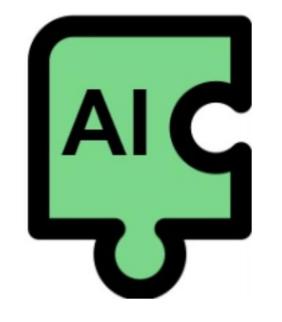
• Focus on technology



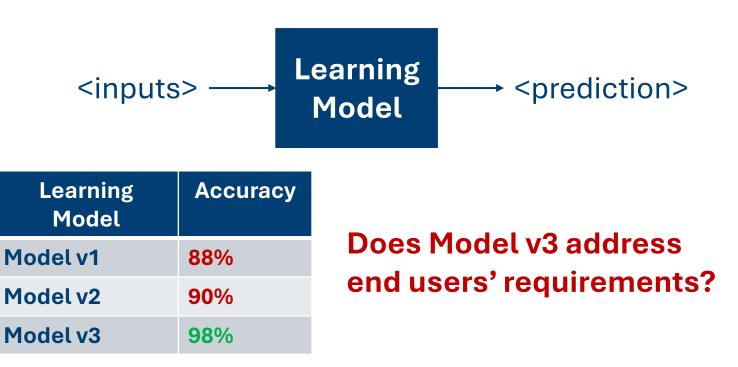
For example, we have a learning model that generates predictions from inputs:

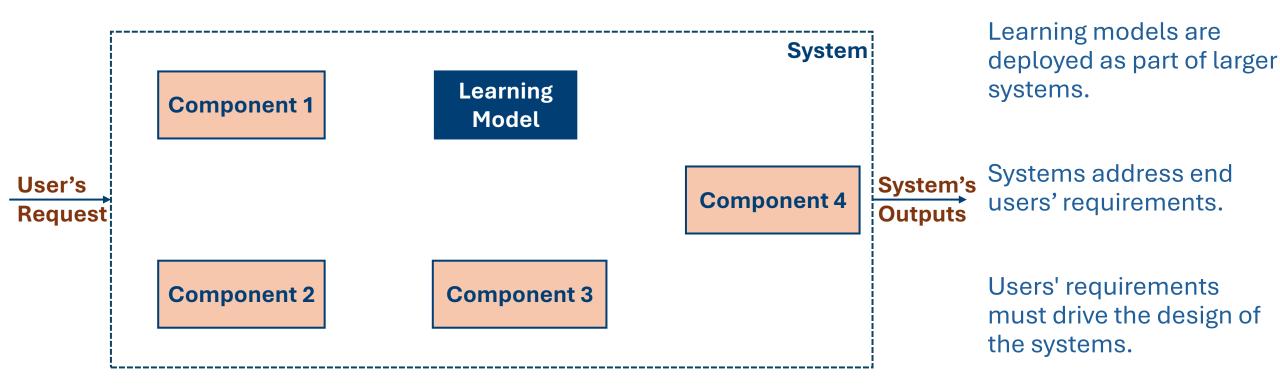


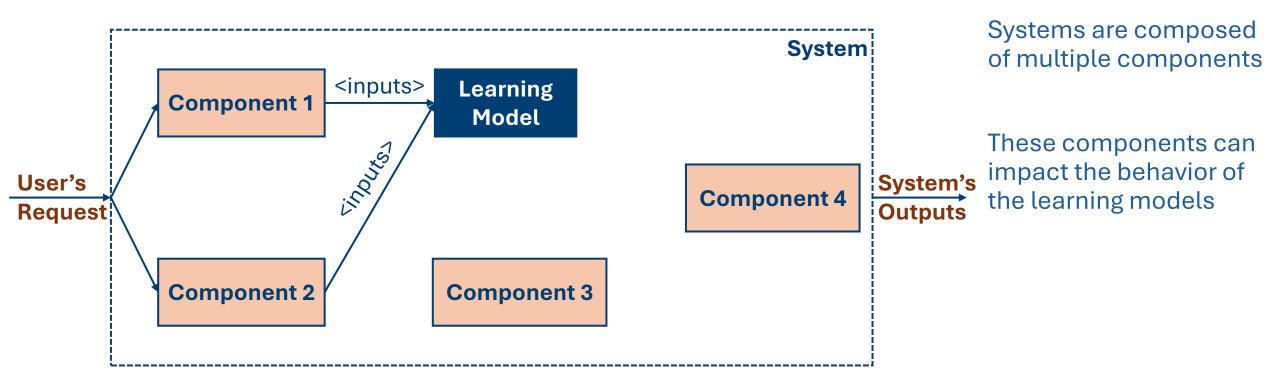
• Focus on technology

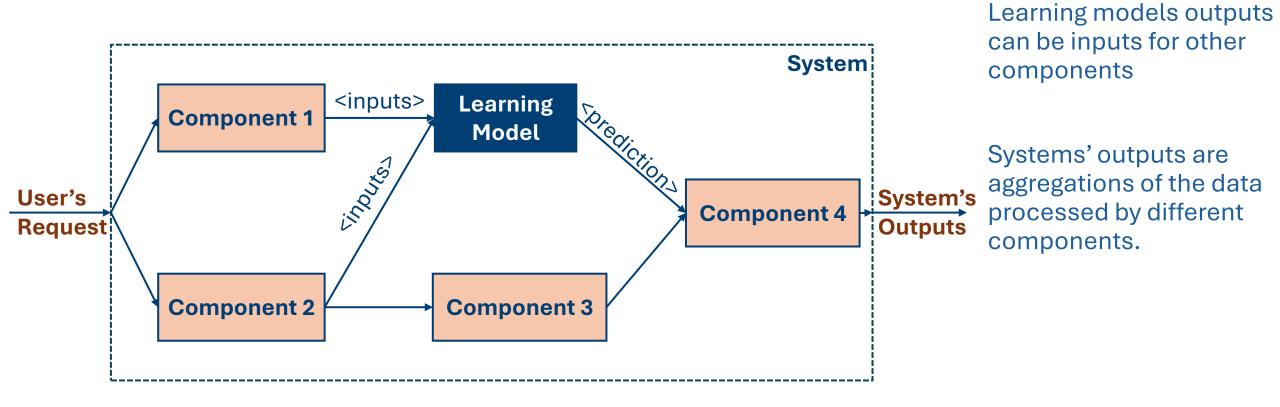


For example, we have a learning model that generates predictions from inputs:

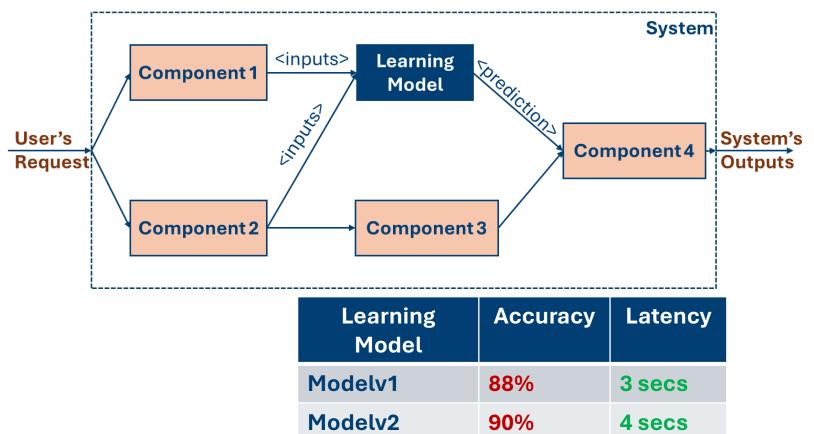








Context matters



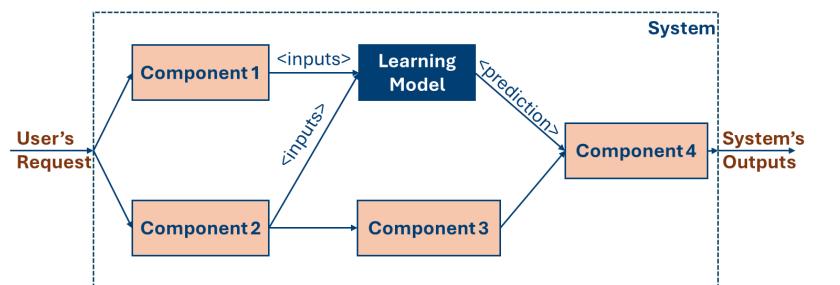
98%

10 secs

Modelv3

* Low latency requirement! (< 5secs)

Context matters



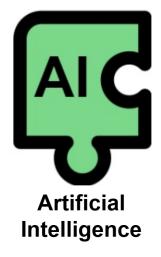
* Low latency requirement! (< 5secs) *Constraint resources.</pre>

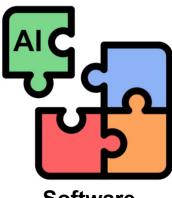
Learning Model	Accuracy	Latency	Resources Demand
Modelv1	88%	3 secs	Low
Modelv2	90%	4 secs	Medium
Modelv3	98%	10 secs	High

Context

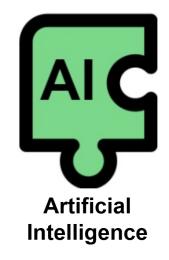
Source: https://commons.wikimedia.org/wiki/File:NP_coffee_cooperative_%28 5867722870%29.jpg What do people need? What are the social problems data science can help with?

Source: https://www.flickr.com/photos/scottishgovernment/23657582298/in/p hotostream/





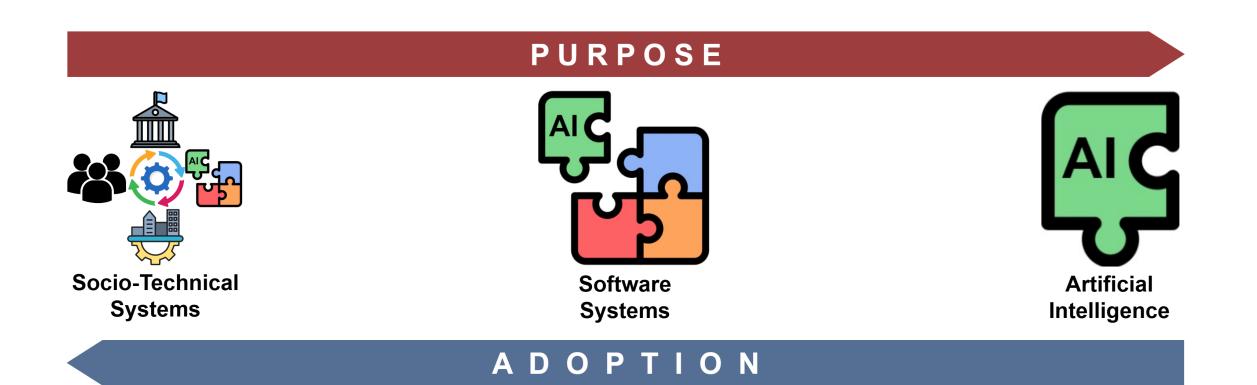
Software Systems

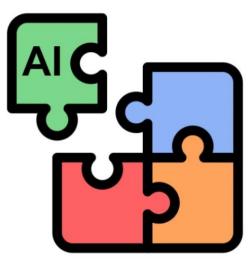


Socio-Technical Systems

PURPOSE

Software Systems





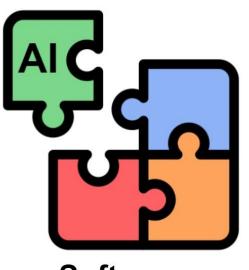
Software Systems

The Systems Engineering Approach

Problem first

. . .

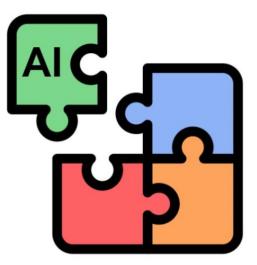
- Why is this problem important?
- What are the people needs?
- Which are the problem constraints?
- What are the important variables to consider?



Software Systems

The Systems Engineering Approach

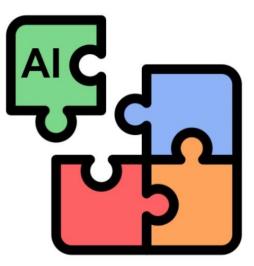
- Engineering Principles
 - Systems Thinking
 - Process Model



Software Systems

Systems Thinking

- System Views: Defining problems from different perspectives.
- Agility System: Defining flexible systems architectures.
- System Dynamics: Modelling the changing nature of systems.



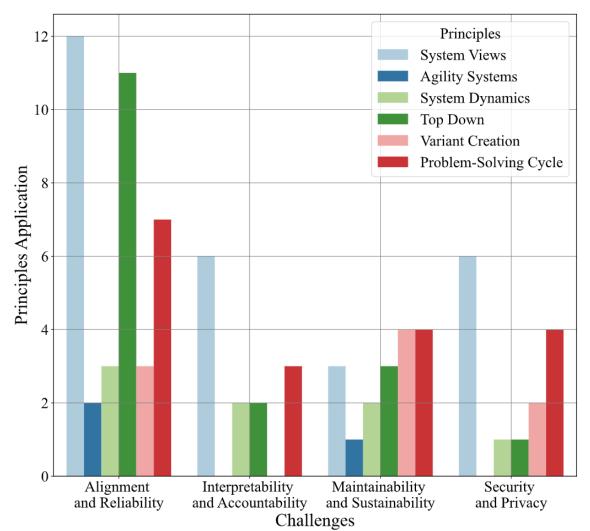
Software Systems

Process Model

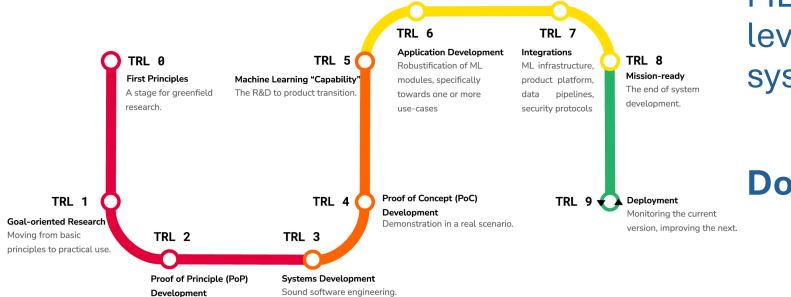
- Top-Down Analysis: Divide and conquer. Problem decomposition.
- Variant Creation: Assessing different alternatives to solve a problem.
- Problem-Solving Cycle: Defining and following a methodology.

A survey of 24 works that apply the principles to address when deploying AI-based Systems:

- Alignment and Reliability
- Interpretability and Accountability
- Maintainability and Sustainability
- Security and Privacy



Cabrera, Christian, Bastidas Viviana, Schooling Jennifer, and Neil David Lawrence. "The Systems Engineering Approach in Times of Large Language Models." *Proceedings of the 58th Hawaii International Conference on System Sciences* 2025. (To appear)



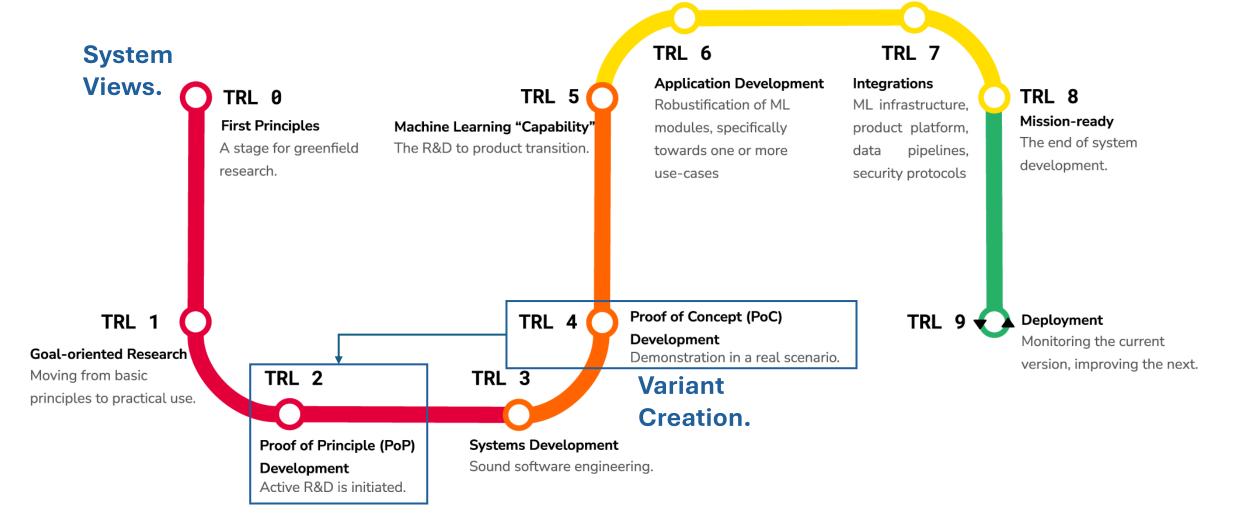
MLTRL – Technology readiness levels for machine learning systems

Domain: Critical Systems

Alignment and reliability, interpretability and accountability, maintainability and sustainability, and security and privacy.

Active R&D is initiated.

Lavin, A., Gilligan-Lee, C.M., Visnjic, A. et al. Technology readiness levels for machine learning systems. Nat Commun 13, 6039 (2022). https://doi.org/10.1038/s41467-022-33128-9



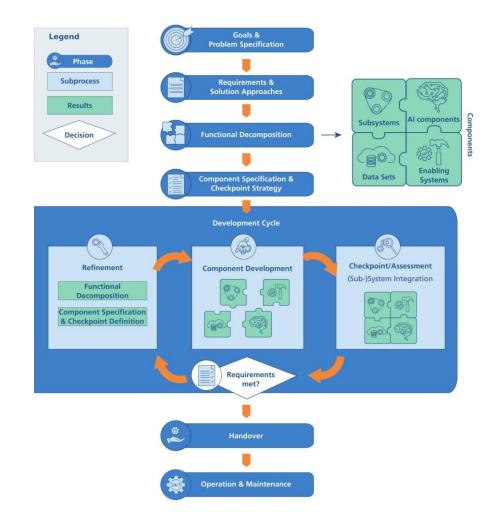
Lavin, A., Gilligan-Lee, C.M., Visnjic, A. et al. Technology readiness levels for machine learning systems. Nat Commun 13, 6039 (2022). https://doi.org/10.1038/s41467-022-33128-9

PAISE[®] – Process Model for AI Systems Engineering

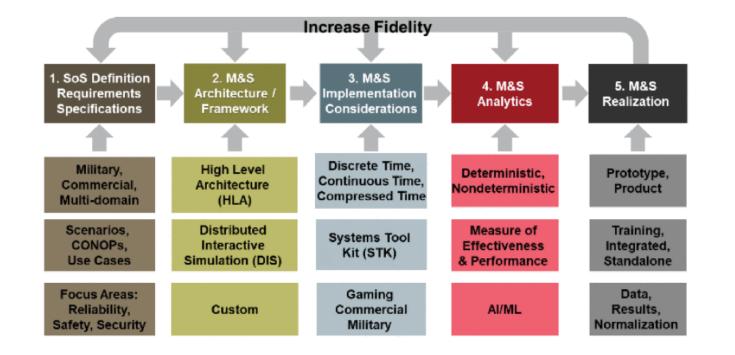
Domain: ML-based Systems

Alignment and reliability:

- Problem Solving Cycle.
- Top-Down Analysis.
- System Views.
- Agility Systems.



Hasterok, Constanze and Stompe, Janina. "PAISE® – process model for AI systems engineering" at - Automatisierungstechnik 70, no. 9 (2022): 777-786. <u>https://doi.org/10.1515/auto-2022-0020</u>



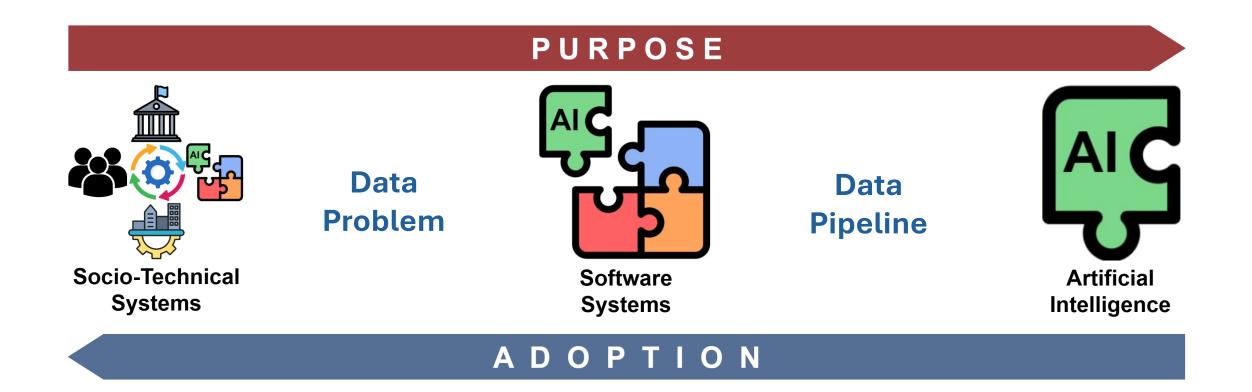
Alignment and reliability, maintainability and sustainability, and security and privacy.

ACDANS – System of Systems Engineering Approach for Complex Deterministic and Nondeterministic Systems

Domain: Military Systems

- Problem Solving Cycle.
- System Dynamics
- Variant Creation.

P. Hershey, "System of Systems Engineering Approach for Complex Deterministic and Nondeterministic Systems (ACDANS)," 2021 16th International Conference of System of Systems Engineering (SoSE), Västerås, Sweden, 2021, pp. 185-190, doi: 10.1109/SOSE52739.2021.9497496.



Data Problem

- Understanding stakeholders' needs
- Understanding resources and constraints
- Understanding data sources
- Understanding the nature of the data

Data Problem

- Understanding stakeholders' needs
- Understanding resources and constraints
- Understanding data sources
- Understanding the nature of the data

Systems Thinking

- Different points of view: city council, landlord, tenants.
- Agility Systems: Flexible resources (e.g., cloud database), and flexible architecture (i.e., library).
- Dynamic Systems: Heterogeneous data, temporal features, spatial data, etc.

Data Pipeline

The Fynesse framework:

- Access
- Assess
- Address

Data Pipeline

The Fynesse framework:

- Access
- Assess
- Address

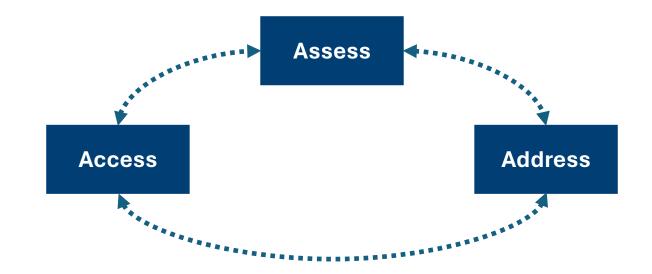
Process Model

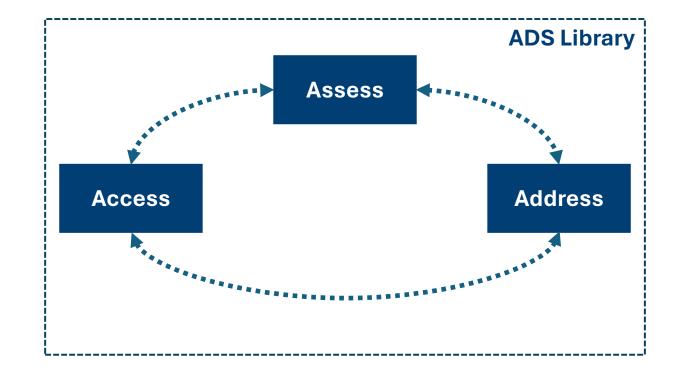
- Top-down: downloading and uploading data chunks.
- Variant creation: exploring different data sources and management strategies.
- Problem-solving cycle: access, assess, and address loop.

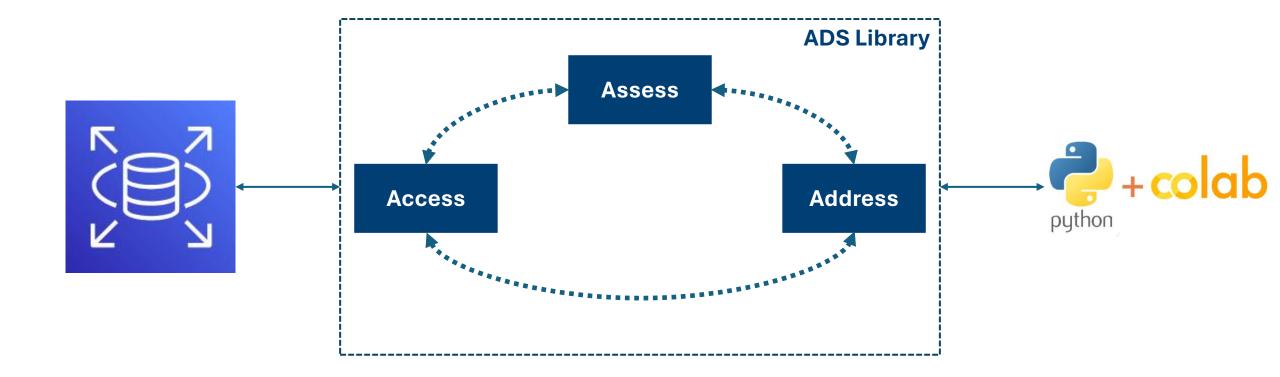
Assess

Access

Address



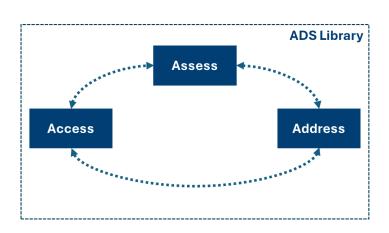




- Data from UK citizens and infrastructure.
- gov.UK and institutions managing data.
- Open Street Maps (OSM).

Socio-Technical

Systems



A D O P T I O N

Learning models

PURPOSE

Summary

- Context is important when addressing Data Science challenges.
- We must address these challenges because Data science projects impact people.
- The Systems Engineering approach provides principles to guide our work.
- We should include these principles in our Data Science projects.

Many thanks!