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The course so far

Access how to get and combine the data-sources for a potential problem

Assess things to do with data before you have a question

Address what you can do when you have data and a question to answer
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Access

• ?

Assess

• Introduction to
Probability (IA)

• Scientific Computing
(IA)

• Cloud Computing (II)

• . . . .

Address

• ML and Real-world
Data (IA)

• Data Science (IB)

• AI (IB)

• ML & Bayesian
Inference (II)

• Deep NN (II)

• Randomised
Algorithms (II)

• . . . .
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Why?
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Data centric thinking

"You need to put Machine Learning in the context of data (and humans)"
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Reasons to use ML

• Tasks that are too hard to program

• speech recognition
• image understanding

• Tasks beyond our capability

• weather prediction
• web search

• Machine Learning bridges the knowledge gap by data
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Machine Learning and Knowledge

p(θ | D) =
p(D | θ)p(θ)

p(D)

• Inductive biases comes into the learning procedure

• Most knowledge is introduced before we apply ML

access what data did I acquire?
assess how did I prepare/treat the data?

• The idea of the 80/20
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Today

• what is actually machine learning?

• what can machine learning actually do?

• put machine learning into context
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Statistical Learning



Machine Learning Paradigms

Supervised Learning p(y | x)
"Unsupervised" Learning p(y)

Reinforcement Learning p(π, f | L)

12



Machine Learning Methods
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Formalism [Shalev-Shwartz et al., 2014]

Domain Set X the set of measurements/objects that we want to label (input)

Label Set Y the set of outputs

Training Data S a finite sequence of pairs in X × Y
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Formalism [Shalev-Shwartz et al., 2014]

Data Distribution D probability distribution governing the measurements

Data Generation f : X → Y the underlying generating process that we wish
to recover

Prediction Rule h : X → Y what we wish to recover, the object that encodes
the recovered knowledge
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Classification
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Measure of Success

LD,f (h) := D({x : h(x) ̸= f(x)})

• measure of success as probability of misclassified points (true risk)

• we do not have access to D
• we do not have access to f

17



Measure of Success

LD,f (h) := D({x : h(x) ̸= f(x)})

• measure of success as probability of misclassified points (true risk)

• we do not have access to D

• we do not have access to f

17



Measure of Success

LD,f (h) := D({x : h(x) ̸= f(x)})

• measure of success as probability of misclassified points (true risk)

• we do not have access to D
• we do not have access to f

17



Classification
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Empirical Risk Minimisation

LS(h) :=
|{i ∈ [m] : h(xi) ̸= yi}|

m

• We assume that S ∼ D
• Empirical measure of risk
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Overfitting

D =
1

3
N (·, ·) + 2

3
N (·, ·)

hS(x) =

{
yi if ∃i ∈ [m]s.t. xi = x

0 otherwise

• LS(hS) = 0 for all training
data-sets

• if label 0 corresponds to red
LD(hS) =

1
3

• if label 0 corresponds to blue
LD(hS) =

2
3
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Algorithm

LS(A(S)) :=
|{i ∈ [m] : h(xi) ̸= yi}|

m

• We use an algorithm A : S → h to find a hypothesis
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Finite Hypothesis Classes

hS ∈ argmin
h∈H

LS(h)

• We cannot parametrise all possible hypothesis
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Statistical Learning Questions

m How much "better" will my estimate get with more data do I need?

A How much does my solution depend on what the algorithm find?

H How does my solution depend on the hypothesis class I choose?
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Regression
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Regression
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The No-Free Lunch Theorem

• Every algorithm that learns something useful does so by making assumptions

• There exists no universial learner/method/algorithm

• There is no free lunch algorithm
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The Components of a Learning System

A my learning algorithm

H my hypothesis class

S my finite trainingset
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Assumptions: Algorithms

Statistical Learning

AH(S)
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Assumptions: Biased Sample

Statistical Learning

AH(S)
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Assumptions: Hypothesis space

Statistical Learning

AH(S)
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The Error Decomposition

h∗

ĥopt

ĥ

hopt

h∗ the optimal predictor

hopt the optimal hypothesis

ĥopt the optimal hypothesis on
training data

ĥ the hypothesis found by
learning algorithm
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The Error Decomposition

h∗

ĥopt

ĥ

hopt

ϵ(ĥ)− ϵ(h∗)

= ϵ(hopt)− ϵ(h∗)︸ ︷︷ ︸
Approximation

+ ϵ(ĥopt)− ϵ(hopt)︸ ︷︷ ︸
Estimation

+ ϵ(ĥ)− ϵ(ĥopt)︸ ︷︷ ︸
Optimisation
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The Bias-Complexity Trade-off

High Complexity low bias (ϵapp small), but high risk of overfitting (ϵest large)

Low Complexity high bias (ϵapp large), low risk of overfitting (ϵest small)
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Universal Learner
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The No-Free Lunch Theorem [Shalev-Shwartz et al., 2014]

Theorem (The No-Free-Lunch Theorem)
Let A be any learning algorithm fo the task of binary classification with respect
to 0− 1 loss over the domain X . Let m be any number smaller than |X |

2 . Then
there exists a distribution D({X × {0, 1}}) such that,

• There exists a function f : X → {0, 1} with LD(f) = 0

• With probability at least 1
7 over the choice of S ∼ Dm we have

LD(A(S)) ≥ 1
8
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The No-Free Lunch Theorem

• There exists no universal learner

• For every learner there exist a task on which it fails

• Every algorithm that learns something useful does so by assumptions

• There is no free lunch algorithm
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Statistical Learning Theory Further Reading

• Shai Shalev-Shwartz et al. (2014). Understanding Machine Learning: From
Theory to Algorithms. New York, NY, USA: Cambridge University Press
https:
//www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
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Statistical Learning Theory Further Reading

• O. Bousquet et al. (2004). “Introduction to Statistical Learning Theory”. In:
vol. Lecture Notes in Artificial Intelligence 3176. Heidelberg, Germany:
Springer, pp. 169–207,
http://www.econ.upf.edu/~lugosi/mlss_slt.pdf
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Statistical Learning Summary

• We can never have sufficient data

• We can never find a method that will guarantee to find the right solution

• We can never be certain about the true risk of our outcome
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Explicit vs. Tacit Knowledge
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Dangers of misattribution
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The Gap

Access enormous inductive bias in what data to acquire

Assess human bias in what questions will probably be asked

Address "it is just curve fitting"
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Curve Fitting is Really Fun
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Generalised Linear Models



Limited Hypothesis Classes

h ∈ H
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Address Requirements for Data Science

Access

Assess

Address
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Formalism

x ∈ X explanatory variable
y ∈ Y response variable
Task explain the response by the explanatory variables
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Linear Regression [Bishop, 2006]

yi =
d∑

j=1

βjxij + ϵ, ϵ ∼ N (0, σ2).
48



Linear Regression Prediction

E[yi | xi] = E

 d∑
j=1

βjxij + ϵ


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Linear Regression Prediction

E[yi | xi] = E

 d∑
j=1

βjxij + ϵ


= E

 d∑
j=1

βjxij

+ E[ϵ]
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Linear Regression Prediction

E[yi | xi] = E

 d∑
j=1

βjxij + ϵ


= E

 d∑
j=1

βjxij

+ E[ϵ]

=
d∑

j=1

βjxij + 0.
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Linear Regression

yi =
d∑

j=1

βjxij + ϵ,
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Linear Regression

yi =
d∑

j=1

βjxij + ϵ,

yi + ϵ =
d∑

j=1

βjxij,

ŷi =
d∑

j=1

βjxij,

ŷi ∼ N (yi, σ
2) = N

 d∑
j=1

βjxij, σ
2

 ,
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Generalised Linear Models [McCullagh et al., 1989]

g(E[yi | xi]) =
d∑

j=1

βjxij,

g(·) link function

y ∼ D Exponential Dispersion Family∑d
j=1 βjxij Linear predictor
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Generalised Linear Models [McCullagh et al., 1989]

E[yi | xi] = g−1(
d∑

j=1

βjxij),

• The inverse of the link maps the linear predictor to the first moment of the
response

• Linear regression the link is identity

• Looks an awful lot like a neural network1

1https://towardsdatascience.com/
glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL
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Exponential Dispersion Family 2

f(y; θ, ϕ) = e
θy−b(θ)

a(ϕ)
+c(y,ϕ)

,

θ location parameter

ϕ scale parameter

2https://en.wikipedia.org/wiki/Exponential_dispersion_model
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Model Response Variable Link Explanatory Variable
Linear Regression Normal Identity Continuous
Logistic Regression Binomial Logit Mixed
Poisson Regression Poisson Log Mixed
ANOVA Normal Identity Categorical
ANCOVA Normal Identity Mixed
Loglinear Poisson Log Categorical
Multinomial response Multinomial Generalized Logit Mixed
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Summary

• Brief introduction to statistical learning theory
• Take home

• ML models and algorithms is only a small part of the story
• we are doing a lot better than we should be
• we are not sure what we are doing but it somehow works

• it is not explicit knowledge that pushes data-science forward, it is tacit among data
scientist
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The rest of the module

Tuesday (8/11) Lab: Generalised Linear Models

Wednesday (9/11) Lecture Generalised Linear Models

Friday (11/11) Lecture: Unsupervised Learning

Monday (14/11) Lecture: Visualisation

Tuesday (15/11) Tick: Generalised Linear Models

Wednesday (16/11) Lecture

Thursday (17/11) Tick 4

Friday (18/11) Summary and Q&A
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eof
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