䁶图 UNIVERSITY OF
(1) CAMBRIDGE

Advanced Data Science

Lecture 6 : Generalised Linear Models

Carl Henrik Ek - che29@cam.ac.uk

9th of November, 2022
http://carlhenrik.com

What is Machine Learning

What does Machine Learning do?

$$
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D}}
$$

The Gap

Access enormous inductive bias in what data to acquire

The Gap

Access enormous inductive bias in what data to acquire Assess human bias in what questions will probably be asked

The Gap

Access enormous inductive bias in what data to acquire Assess human bias in what questions will probably be asked Address "it is just curve fitting"

Requirements for Data Science

Generalised Linear Models

Formalism

$\mathbf{x} \in \mathcal{X}$ explanatory variable
$y \in \mathcal{Y}$ response variable
Task explain the response by the explanatory variables

Linear Regression [Bishop, 2006]

Linear Regression Prediction

$$
\mathbb{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=\mathbb{E}\left[\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon\right]
$$

Linear Regression Prediction

$$
\begin{aligned}
\mathbb{E}\left[y_{i} \mid \mathbf{x}_{i}\right] & =\mathbb{E}\left[\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon\right] \\
& =\mathbb{E}\left[\sum_{j=1}^{d} \beta_{j} x_{i j}\right]+\mathbb{E}[\epsilon]
\end{aligned}
$$

Linear Regression Prediction

$$
\begin{aligned}
\mathbb{E}\left[y_{i} \mid \mathbf{x}_{i}\right] & =\mathbb{E}\left[\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon\right] \\
& =\mathbb{E}\left[\sum_{j=1}^{d} \beta_{j} x_{i j}\right]+\mathbb{E}[\epsilon] \\
& =\sum_{j=1}^{d} \beta_{j} x_{i j}+0
\end{aligned}
$$

Linear Regression

$$
y_{i}=\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon
$$

Linear Regression

$$
\begin{aligned}
y_{i} & =\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon, \\
y_{i}+\epsilon & =\sum_{j=1}^{d} \beta_{j} x_{i j}
\end{aligned}
$$

Linear Regression

$$
\begin{aligned}
y_{i} & =\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon \\
y_{i}+\epsilon & =\sum_{j=1}^{d} \beta_{j} x_{i j} \\
\hat{y}_{i} & =\sum_{j=1}^{d} \beta_{j} x_{i j}
\end{aligned}
$$

Linear Regression

$$
\begin{aligned}
y_{i} & =\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon \\
y_{i}+\epsilon & =\sum_{j=1}^{d} \beta_{j} x_{i j} \\
\hat{y}_{i} & =\sum_{j=1}^{d} \beta_{j} x_{i j} \\
\hat{y}_{i} & \sim \mathcal{N}\left(\hat{y}_{i} \mid y_{i}, \sigma^{2}\right)=\mathcal{N}\left(\hat{y}_{i} \mid \sum_{j=1}^{d} \beta_{j} x_{i j}, \sigma^{2}\right)
\end{aligned}
$$

Generalised Linear Models [McCullagh et al., 1989]

$$
g\left(\mathbb{E}\left[y_{i} \mid \mathbf{x}_{i}\right]\right)=\sum_{j=1}^{d} \beta_{j} x_{i j},
$$

$g(\cdot)$ link function
$y \sim \mathcal{D}$ Exponential Dispersion Family
$\sum_{j=1}^{d} \beta_{j} x_{i j}$ Linear predictor

Generalised Linear Models [McCullagh et al., 1989]

$$
\mathbb{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=g^{-1}\left(\sum_{j=1}^{d} \beta_{j} x_{i j}\right),
$$

- The inverse of the link maps the linear predictor to the first moment of the response
- Linear regression the link is identity

```
1}https://towardsdatascience.com/ 
glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL
```


Generalised Linear Models [McCullagh et al., 1989]

$$
\mathbb{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=g^{-1}\left(\sum_{j=1}^{d} \beta_{j} x_{i j}\right),
$$

- The inverse of the link maps the linear predictor to the first moment of the response
- Linear regression the link is identity
- Looks an awful lot like a neural network ${ }^{1}$

[^0]

Transformation vs GLM

$$
\begin{aligned}
\log \left(y_{i}\right) & =\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon_{i} \\
y_{i} & =e^{\sum_{j=1}^{d} \beta_{j} x_{i j}+\epsilon_{i}}=e^{\sum_{j=1}^{d} \beta_{j} x_{i j}} e^{\epsilon_{i}}
\end{aligned}
$$

$$
\begin{aligned}
\log \left(\hat{y}_{i}\right) & =\sum_{j=1}^{d} \beta_{j} x_{i j} \\
y_{i} & =e^{\sum_{j=1}^{d} \beta_{j} x_{i j}}+\epsilon
\end{aligned}
$$

Exponential Dispersion Family ${ }^{2}$

$$
f(y ; \theta, \phi)=e^{\frac{\theta y-b(\theta)}{a(\phi)}+c(y, \phi)},
$$

θ location parameter
ϕ scale parameter
i.i.d. we will assume that the data is drawn i.i.d.

[^1]
Gaussian

$$
f\left(y ; \mu, \sigma^{2}\right)=e^{\frac{\mu y-\frac{1}{2} \mu^{2}}{\sigma^{2}}-\frac{y^{2}}{2 \sigma^{2}}-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)}
$$

- $\theta=\mu$
- $\phi=\sigma^{2}$
- $b(\theta)=\frac{1}{2} \mu^{2}$
- $a(\phi)=\sigma^{2}$
- $c(y, \phi)=\frac{y^{2}}{2 \sigma^{2}}-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)$

Moments

$$
\begin{aligned}
\mathbb{E}[y \mid \mathbf{x}] & =\frac{\partial}{\partial \theta} b(\theta) \\
\mathbb{V}[y \mid \mathbf{x}] & =a(\phi) \frac{\partial^{2}}{\partial \theta^{2}} b(\theta)
\end{aligned}
$$

- Through a consistent parametrisation we can generalise the moment calculations

Statsmodels

Code

import statsmodels.api as sm
$m=s m . G L M(y, \quad x, \quad s m . f a m i l i e s . G a u s s i a n(s m . f a m i l i e s . l i n k s . l o g()))$
m_r $=$ m.fit()
$y_{-} p=m_{-} r . g e t _p r e d i c t i o n\left(x_{-} p\right) . \operatorname{summary}$ _frame(alpha=0.05)['mean ' $]$

Families Binomial, Gamma, Gaussian, InverseGaussian, NegativeBinomial, Poisson, Tweedie
Link Functions CLogLog, LogLog, Log, Logit, NegativeBinomial, Power, cauchy, identity, inverse_power, inverse_squared, nbinom, probit

Binomial Distribution

Binomial Regression

$$
\begin{aligned}
g\left(y_{i}\right) & =\beta_{0}+\beta_{1} x_{i 1} \\
y_{i} & \sim \operatorname{Binom}(n, p)
\end{aligned}
$$

- y_{i} is a frequency or odds

Binomial Regression

$$
\begin{aligned}
g\left(y_{i}\right) & =\beta_{0}+\beta_{1} x_{i 1} \\
y_{i} & \sim \operatorname{Binom}(n, p)
\end{aligned}
$$

- y_{i} is a frequency or odds
- need to pick a link function that limits to $y_{i} \in[0,1]$

Logit-Link

$$
\operatorname{logit}\left(y_{i}\right)=\log \left(\frac{y_{i}}{1-y_{i}}\right)
$$

Sigmoid Function

$$
\operatorname{logit}\left(y_{i}\right)=\log \left(\frac{y_{i}}{1-y_{i}}\right)=\beta_{0}+\beta_{1} x_{i 1}
$$

Sigmoid Function

$$
\begin{aligned}
\operatorname{logit}\left(y_{i}\right)=\log \left(\frac{y_{i}}{1-y_{i}}\right) & =\beta_{0}+\beta_{1} x_{i 1} \\
\frac{y_{i}}{1-y_{i}} & =e^{\beta_{0}+\beta_{1} x_{i 1}}
\end{aligned}
$$

Sigmoid Function

$$
\begin{aligned}
\operatorname{logit}\left(y_{i}\right)=\log \left(\frac{y_{i}}{1-y_{i}}\right) & =\beta_{0}+\beta_{1} x_{i 1} \\
\frac{y_{i}}{1-y_{i}} & =e^{\beta_{0}+\beta_{1} x_{i 1}} \\
y_{i}\left(1+e^{\beta_{0}+\beta_{1} x_{i 1}}\right) & =e^{\beta_{0}+\beta_{1} x_{i 1}}
\end{aligned}
$$

Sigmoid Function

$$
\begin{aligned}
\operatorname{logit}\left(y_{i}\right)=\log \left(\frac{y_{i}}{1-y_{i}}\right) & =\beta_{0}+\beta_{1} x_{i 1} \\
\frac{y_{i}}{1-y_{i}} & =e^{\beta_{0}+\beta_{1} x_{i 1}} \\
y_{i}\left(1+e^{\beta_{0}+\beta_{1} x_{i 1}}\right) & =e^{\beta_{0}+\beta_{1} x_{i 1}} \\
y_{i} & =\frac{e^{\beta_{0}+\beta_{1} x_{i 1}}}{1+e^{\beta_{0}+\beta_{1} x_{i 1}}}
\end{aligned}
$$

Sigmoid Function

$$
\begin{aligned}
\operatorname{logit}\left(y_{i}\right)=\log \left(\frac{y_{i}}{1-y_{i}}\right) & =\beta_{0}+\beta_{1} x_{i 1} \\
\frac{y_{i}}{1-y_{i}} & =e^{\beta_{0}+\beta_{1} x_{i 1}} \\
y_{i}\left(1+e^{\beta_{0}+\beta_{1} x_{i 1}}\right) & =e^{\beta_{0}+\beta_{1} x_{i 1}} \\
y_{i} & =\frac{e^{\beta_{0}+\beta_{1} x_{i 1}}}{1+e^{\beta_{0}+\beta_{1} x_{i 1}}} \\
& =\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{i 1}\right)}}
\end{aligned}
$$

Binomial Data [Weisberg, 2005]

Current	Trials	Response	Proportion
0	70	0	0.00
1	70	9	0.129
2	70	21	0.300
3	70	47	0.671
4	70	60	0.857
5	70	63	0.900

Logistic Regression

sm.GLM(y, X, sm.families.Binomial(sm.families.links.logit()))

Poisson Distribution

- Arrival times
- Website visitors
- Job cue for server
- Failures of product

Poisson Distribution

$$
\operatorname{Poisson}\left(y_{i}\right)=\frac{e^{-\lambda} \lambda^{y}}{y!}
$$

$$
\mathbb{E}\left[y_{i}\right]=\lambda
$$

Poisson Regression

- Counts are positive so we need a positive link function

$$
\log \left(\lambda_{i}\right)=\sum_{j=1}^{d} \beta_{j} x_{i j}
$$

Poisson Regression

- Counts are positive so we need a positive link function

$$
\log \left(\lambda_{i}\right)=\sum_{j=1}^{d} \beta_{j} x_{i j}
$$

- Leads to the following model

$$
p\left(y_{i} \mid x_{i}\right)=\frac{e^{-\lambda_{i}} \lambda_{i}^{y} i}{y_{i}!}=\frac{e^{-\left(e^{\sum_{j=1}^{d} \beta_{j} x_{i j}}\right)}\left(e^{\sum_{j=1}^{d} \beta_{j} x_{i j}}\right)^{y_{i}}}{y_{i}!}
$$

Poisson Data Brooklyn Bridge Data

Day	Day of Week	Month	High Temp	Low Temp	Percipitation	Cyclists
1.0	5.0	4.0	46.0	37.0	0.00	606.0
2.0	6.0	4.0	62.1	41.0	0.00	2021.0
3.0	0.0	4.0	63.0	50.0	0.03	2470.0
4.0	1.0	4.0	51.1	46.0	1.18	723.0
6.0	3.0	4.0	48.9	41.0	0.73	461.0
\ldots						
1	31	10	54	44	0.00	2727

Poisson Regression

sm.GLM(y, X, family=sm.families.Poisson()).fit()

Gamma Distribution

- Waiting times for Poisson events
- Variance and mean connected

Gamma Distribution

$\operatorname{Gamma}\left(y_{i}\right)=\frac{1}{\Gamma(\phi) \theta^{\phi}} y_{i}^{\phi-1} e^{-\frac{y_{i}}{\theta}}$

$$
\begin{aligned}
\mathbb{E}\left[y_{i}\right] & =\phi \theta \\
\mathbb{V}\left[y_{i}\right] & =\phi \theta^{2}
\end{aligned}
$$

Gamma Regression

- Exponential Dispersion Gamma

$$
\operatorname{Gamma}\left(y_{i}\right)=e^{\frac{y_{i} \theta_{i}-\log \left(-\frac{1}{\theta_{i}}\right)}{\phi}+\frac{1-\phi}{\phi} \log \left(y_{i}\right)-\log \left(\Gamma\left(\phi^{-1}\right)\right.}
$$

Gamma Regression

- Exponential Dispersion Gamma

$$
\operatorname{Gamma}\left(y_{i}\right)=e^{\frac{y_{i} \theta_{i}-\log \left(-\frac{1}{\theta_{i}}\right)}{\phi}+\frac{1-\phi}{\phi} \log \left(y_{i}\right)-\log \left(\Gamma\left(\phi^{-1}\right)\right.}
$$

- If you "derive" the canonical link function from the distribution it should be,

$$
-\frac{1}{\theta}=\sum_{j=1}^{d} \beta_{j} x_{i j}
$$

Gamma Regression

- Exponential Dispersion Gamma

$$
\operatorname{Gamma}\left(y_{i}\right)=e^{\frac{y_{i} \theta_{i}-\log \left(-\frac{1}{\theta_{i}}\right)}{\phi}+\frac{1-\phi}{\phi} \log \left(y_{i}\right)-\log \left(\Gamma\left(\phi^{-1}\right)\right.}
$$

- If you "derive" the canonical link function from the distribution it should be,

$$
-\frac{1}{\theta}=\sum_{j=1}^{d} \beta_{j} x_{i j}
$$

- Gamma regression is most commonly used with log as the link

$$
\log \left(\mathbb{E}\left[y_{i} \mid \mathbf{x}_{i}\right]\right)=\sum_{j=1}^{d} \beta_{j} x_{i j}
$$

Gamma Regression

Model	Response Variable	Link	Explanatory Variable
Linear Regression	Normal	Identity	Continuous
Logistic Regression	Binomial	Logit	Mixed
Poisson Regression	Poisson	Log	Mixed
ANOVA	Normal	Identity	Categorical
ANCOVA	Normal	Identity	Mixed
Loglinear	Poisson	Log	Categorical
Multinomial response	Multinomial	Generalized Logit	Mixed

Inference

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\beta}, \mathbf{x}_{i}\right)
$$

- In general gradient descent on log-likelihood
- For specific models there are tailored inference schemes

Design Matrix

Design Matrix

$$
\mathbf{X}=\left[\begin{array}{cc}
x_{0} & 1 \\
x_{1} & 1 \\
\vdots & \vdots \\
x_{N} & 1
\end{array}\right]
$$

Non-Linear Function

Design Matrix

$$
\mathbf{X}=\left[\begin{array}{ccc}
\sin \left(x_{0}\right) & \sin \left(\frac{x_{0}^{2}}{40}\right) & x_{0} \\
\sin \left(x_{1}\right) & \sin \left(\frac{x_{1}^{2}}{40}\right) & x_{1} \\
\vdots & \vdots & \vdots \\
\sin \left(x_{N}\right) & \sin \left(\frac{x_{N}^{2}}{40}\right) & x_{N}
\end{array}\right]
$$

$$
\boldsymbol{\beta}=[0.2155,0.4956,0.0482]
$$

Over-parametrised matrix

$$
\boldsymbol{\beta}=[0.1078,0.4956,0.0482,0.1078]
$$

Localised Basis Function

$$
g\left(\mathbb{E}\left[y_{i} \mid \mathbf{x}_{i}\right]\right)=\sum_{j=1}^{N} \beta_{j} \phi\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right), \quad \phi\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)=e^{-\frac{\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\mathrm{T}}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)}{\ell^{2}}}
$$

Regularisation

Solution bias

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\beta}, \mathbf{x}_{i}\right)
$$

- Maximum Likelihood encodes no preference towards any solution
- Due to optimisation procedure we might get very different results

Norm

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\beta}, \mathbf{x}_{i}\right)+\lambda\left(\sum_{j=1}^{d} \beta_{j}^{p}\right)^{\frac{1}{p}}
$$

- Introduce inductive bias towards specific solutions
- Normally done using a norm

Ridge vs Lasso

Code
m.fit_regularized(alpha=0.10,L1_wt=0.0)

- L1_wt $0 \rightarrow$ Ridge, $1 \rightarrow$ Lasso
- alpha the penalty

Summary

Generalised Linear Models

Response Variable Distribution How is your response variable distributed?

Generalised Linear Models

Response Variable Distribution How is your response variable distributed? Link Function How is the scale parameter of the distribution related to the explanatory variables

Generalised Linear Models

Response Variable Distribution How is your response variable distributed? Link Function How is the scale parameter of the distribution related to the explanatory variables
Design Matrix What is the features of the explanatory variables?

Response Variable Distribution How is your response variable distributed? Link Function How is the scale parameter of the distribution related to the explanatory variables
Design Matrix What is the features of the explanatory variables?
Regulariser What is the "preferred" solution?

Thoughts

- Can you split up the data by some criterion?

Thoughts

- Can you split up the data by some criterion?
- localised GLM

Thoughts

- Can you split up the data by some criterion?
- localised GLM
- Can you remove the effect of one model from data and then retrain on residual?

Thoughts

- Can you split up the data by some criterion?
- localised GLM
- Can you remove the effect of one model from data and then retrain on residual?
- You will not be able to find the "perfect" model, but show that you can reason about these models!!

```
eof
```


References

R Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.
围 McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. London, UK: Chapman Hall / CRC: Chapman Hall / CRC.
国 Weisberg, Sanford (2005). Applied Linear Regression. Wiley Series in Probability and Statistics. John Wiley \& Sons, Inc., nil.

[^0]: ${ }^{1}$ https://towardsdatascience.com/
 glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL

[^1]: ${ }^{2}$ https://en.wikipedia.org/wiki/Exponential_dispersion_model

