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What is Machine Learning
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What does Machine Learning do?

p(θ | D) =
p(D | θ)p(θ)

p(D
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The Gap

Access enormous inductive bias in what data to acquire

Assess human bias in what questions will probably be asked

Address "it is just curve fitting"
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Requirements for Data Science

Access

Assess

Address
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Generalised Linear Models



Formalism

x ∈ X explanatory variable
y ∈ Y response variable
Task explain the response by the explanatory variables
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Linear Regression [Bishop, 2006]

yi =
d∑

j=1

βjxij + ϵ, ϵ ∼ N (0, σ2).
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Linear Regression Prediction

E[yi | xi] = E

 d∑
j=1

βjxij + ϵ


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Linear Regression

yi =
d∑

j=1

βjxij + ϵ,

yi + ϵ =
d∑

j=1

βjxij,

ŷi =
d∑

j=1

βjxij,

ŷi ∼ N (ŷi | yi, σ2) = N

ŷi |
d∑

j=1

βjxij, σ
2

 ,
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Generalised Linear Models [McCullagh et al., 1989]

g(E[yi | xi]) =
d∑

j=1

βjxij,

g(·) link function

y ∼ D Exponential Dispersion Family∑d
j=1 βjxij Linear predictor
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Generalised Linear Models [McCullagh et al., 1989]

E[yi | xi] = g−1

 d∑
j=1

βjxij

 ,

• The inverse of the link maps the linear predictor to the first moment of the
response

• Linear regression the link is identity

• Looks an awful lot like a neural network1

1https://towardsdatascience.com/
glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL
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yi = f(xi) + ϵ

ϵ ∼ N (0, σ2)
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Transformation vs GLM

log(yi) =
d∑

j=1

βjxij + ϵi

yi = e
∑d

j=1 βjxij+ϵi = e
∑d

j=1 βjxijeϵi

log(ŷi) =
d∑

j=1

βjxij

yi = e
∑d

j=1 βjxij + ϵ
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Exponential Dispersion Family 2

f(y; θ, ϕ) = e
θy−b(θ)

a(ϕ)
+c(y,ϕ)

,

θ location parameter

ϕ scale parameter

i.i.d. we will assume that the data is drawn i.i.d.

2https://en.wikipedia.org/wiki/Exponential_dispersion_model
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Gaussian

f(y;µ, σ2) = e
µy− 1

2µ2

σ2 − y2

2σ2− 1
2
ln(2πσ2)

• θ = µ

• ϕ = σ2

• b(θ) = 1
2µ

2

• a(ϕ) = σ2

• c(y, ϕ) = y2

2σ2 − 1
2 ln(2πσ

2)

14



Moments

E[y | x] = ∂

∂θ
b(θ)

V[y | x] = a(ϕ)
∂2

∂θ2
b(θ).

• Through a consistent parametrisation we can generalise the moment
calculations
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Statsmodels

Code

import statsmodels.api as sm
m = sm.GLM(y, x, sm.families.Gaussian(sm.families.links.log()))
m_r = m.fit()
y_p = m_r.get_prediction(x_p).summary_frame(alpha=0.05)['mean']

Families Binomial, Gamma, Gaussian, InverseGaussian,
NegativeBinomial, Poisson, Tweedie

Link Functions CLogLog, LogLog, Log, Logit, NegativeBinomial,
Power, cauchy, identity, inverse_power,
inverse_squared, nbinom, probit
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Binomial Distribution
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Binomial Regression

g(yi) = β0 + β1xi1

yi ∼ Binom(n, p)

• yi is a frequency or odds

• need to pick a link function that limits to yi ∈ [0, 1]
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Logit-Link

logit(yi) = log

(
yi

1− yi

)
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Sigmoid Function

logit(yi) = log

(
yi

1− yi

)
= β0 + β1xi1
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Sigmoid Function

logit(yi) = log
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yi
1− yi

= eβ0+β1xi1

yi(1 + eβ0+β1xi1) = eβ0+β1xi1

yi =
eβ0+β1xi1

1 + eβ0+β1xi1

=
1
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Binomial Data [Weisberg, 2005]

Current Trials Response Proportion
0 70 0 0.00
1 70 9 0.129
2 70 21 0.300
3 70 47 0.671
4 70 60 0.857
5 70 63 0.900
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Logistic Regression

sm.GLM(y, X, sm.families.Binomial(sm.families.links.logit())) 22



Poisson Distribution

• Arrival times

• Website visitors

• Job cue for server

• Failures of product
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Poisson Distribution

Poisson(yi) =
e−λλy

y!

E[yi] = λ
24



Poisson Regression

• Counts are positive so we need a positive link function

log(λi) =
d∑

j=1

βjxij

• Leads to the following model

p(yi | xi) =
e−λiλy

i i

yi!
=

e
−
(
e
∑d

j=1 βjxij

) (
e
∑d

j=1 βjxij

)yi

yi!
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Poisson Data Brooklyn Bridge Data

Day Day of Week Month High Temp Low Temp Percipitation Cyclists
1.0 5.0 4.0 46.0 37.0 0.00 606.0
2.0 6.0 4.0 62.1 41.0 0.00 2021.0
3.0 0.0 4.0 63.0 50.0 0.03 2470.0
4.0 1.0 4.0 51.1 46.0 1.18 723.0
6.0 3.0 4.0 48.9 41.0 0.73 461.0
. . . . . . . . . . . . . . . . . . . . .

1 31 10 54 44 0.00 2727
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Poisson Regression

sm.GLM(y, X, family=sm.families.Poisson()).fit() 27



Gamma Distribution

• Waiting times for Poisson
events

• Variance and mean
connected
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Gamma Distribution

Gamma(yi) =
1

Γ(ϕ)θϕ
yϕ−1
i e−

yi
θ

E[yi] = ϕθ

V[yi] = ϕθ2
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Gamma Regression

• Exponential Dispersion Gamma

Gamma(yi) = e
yiθi−log(− 1

θi
)

ϕ
+ 1−ϕ

ϕ
log(yi)−log(Γ(ϕ−1)

• If you "derive" the canonical link function from the distribution it should be,

−1

θ
=

d∑
j=1

βjxij

• Gamma regression is most commonly used with log as the link

log(E[yi | xi]) =
d∑

j=1

βjxij
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Gamma Regression
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Model Response Variable Link Explanatory Variable
Linear Regression Normal Identity Continuous
Logistic Regression Binomial Logit Mixed
Poisson Regression Poisson Log Mixed
ANOVA Normal Identity Categorical
ANCOVA Normal Identity Mixed
Loglinear Poisson Log Categorical
Multinomial response Multinomial Generalized Logit Mixed
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Inference

β̂ = argmax
β

N∏
i=1

p(yi | β,xi)

• In general gradient descent on log-likelihood

• For specific models there are tailored inference schemes

33



Design Matrix



Design Matrix

X =


x0 1

x1 1
...

...
xN 1


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Non-Linear Function

y = 0.2 sin(x) + sin

(
x2

40

)
+ 0.05x
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Design Matrix

X =


sin(x0) sin(x

2
0

40) x0

sin(x1) sin(x
2
1

40) x1
...

...
...

sin(xN ) sin(
x2
N

40 ) xN



β = [0.2155, 0.4956, 0.0482]
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Over-parametrised matrix


sin(x0) sin(x

2
0

40) x0 − sin(x0)

sin(x1) sin(x
2
1

40) x1 − sin(x1)
...

...
...

...

sin(xN ) sin(
x2
N

40 ) xN − sin(xN )



β = [0.1078, 0.4956, 0.0482, 0.1078]
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Localised Basis Function

g (E[yi | xi]) =
N∑
j=1

βjϕ(xj,xi), ϕ(xj,xi) = e−
(xi−xj)

T(xi−xj)

ℓ2

38



Regularisation



Solution bias

β̂ = argmax
β

N∏
i=1

p(yi | β,xi)

• Maximum Likelihood encodes no preference towards any solution

• Due to optimisation procedure we might get very different results
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Norm

β̂ = argmax
β

N∏
i=1

p(yi | β,xi) + λ

 d∑
j=1

βp
j

 1
p

• Introduce inductive bias towards specific solutions

• Normally done using a norm

40



Ridge vs Lasso

41



statsmodels

Code

m.fit_regularized(alpha=0.10,L1_wt=0.0)

• L1_wt 0 → Ridge, 1 → Lasso

• alpha the penalty
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Summary



Generalised Linear Models

Response Variable Distribution How is your response variable distributed?

Link Function How is the scale parameter of the distribution related to the
explanatory variables

Design Matrix What is the features of the explanatory variables?

Regulariser What is the "preferred" solution?
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Thoughts

• Can you split up the data by some criterion?

• localised GLM

• Can you remove the effect of one model from data and then retrain on
residual?

• You will not be able to find the "perfect" model, but show that you can
reason about these models!!
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eof
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