

Advanced Data Science

Lecture 8 : Visualisation II

Carl Henrik Ek - che29@cam.ac.uk

14th of November, 2022

http://carlhenrik.com

Data Science is Debugging

Distance Matrix

Distance Matrix

Distance Matrix

Compute distance between each pair of the two collections of inputs.

metricstr or callable, optional The distance metric to use. If a string, the distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'kulczynski1', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.

Dimensionality Reduction

High Dimensional

0.98177005	-0.99053874	-0.01683981	-0.3994665	0.12133672
1.16342824	-0.99520027	0.90381171	0.27386304	-1.06091985
-1.90577283	0.91220641	1.74809035	1.66393916	-0.54346161
-0.56907458	0.89406555	-0.17182898	1.81980444	1.8713991
1.53380634	1.20296216	-0.26604579	0.48691598	-1.3871063
-0.95765954	-0.61907303	-1.33657998	0.71134795	1.01014797
1.32466764	0.53453037	-1.55772646	1.55236474	0.84368406
-0.6207868	0.25005863	-0.90101442	0.07198261	0.92843713
0.89584615	0.20860728	0.56883429	0.2793335	0.32354156
0.10053249	-1.01930463	0.71546593	-1.87660674	-1.03507809
-0.54741634	1.42964806	-1.84004808	-0.94952952	-0.31223371

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$
$$\mathbf{\Lambda} = \begin{cases} 0 & i \neq j \\ \lambda_i & i = j \end{cases}$$
$$\mathbf{V} \mathbf{V}^{\mathrm{T}} = \mathbf{I} \quad \Rightarrow \quad \mathbf{V}^{-1} = \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{M} = \sum_{i=1}^{N} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathrm{T}}.$$

- the eigen decomposition means we can write a matrix as a sum of rank one matrices
- all symmetric real matrices have a diagonal matrix that they are similar to

$\operatorname{Rank}(T) + \operatorname{Nullity}(T) = \dim(A)$

- $\bullet \ T: A \to B$ is a map between two vector spaces
- $\operatorname{Rank}(T)$ is the dimensionality of the *image* of T
- Nullity(T) is the dimensionality of the *kernel* of T

 $\operatorname{Rank}(T) + \operatorname{Nullity}(T) = \dim(A)$

Task Can we find a map T such that kernel of the map is the subspace where the data have no variations?

Task Can we find a map T such that the dimensions are ordered in decreasing order of how much variations the data has?

Rank-Nullity

 $\mathbf{Y}^{\mathrm{T}}\mathbf{Y} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathrm{T}}$

• Compute Empirical Covariance Matrix of the data

 $\mathbf{C} = \mathbf{Y}^T \mathbf{Y}$

• Compute Empirical Covariance Matrix of the data

 $\mathbf{C} = \mathbf{Y}^T \mathbf{Y}$

• Diagonalise C

 $\mathbf{C} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$

• Compute Empirical Covariance Matrix of the data

$$\mathbf{C} = \mathbf{Y}^T \mathbf{Y}$$

• Diagonalise C

$$\mathbf{C} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$$

• Project Data onto eigenvectors that corresponds to highest variance

 $\mathbf{X} = \mathbf{Y}\mathbf{V}^{\mathrm{T}}$

MoCap

Eigenvectors and Eigenvalues

Matrices

Distances and Inner Products

Distances and Inner Products

$$\mathbf{D}_{ij}^2 = d_{ij}^2 = \sum_{k=1}^d (y_{ki} - y_{kj})^2 = \mathbf{y}_i^{\mathrm{T}} \mathbf{y}_i + \mathbf{y}_j^{\mathrm{T}} \mathbf{y}_j - 2\mathbf{y}_i^{\mathrm{T}} \mathbf{y}_j$$
$$\mathbf{G}_{ij} = g_{ij} = \mathbf{y}_i^{\mathrm{T}} \mathbf{y}_j$$
$$d_{ij}^2 = g_{ii} + g_{jj} - 2g_{ij}$$

• if we assume that the data is centred we can write the Gram matrix as a function of the distance matrix

Distances and Inner Products

Multi Dimensional Scaling [Cox et al., 2008]

• Given a similarity matrix Δ can we find a vectorial representation such that,

$$\mathbf{y}_i^{\mathrm{T}} \mathbf{y}_j = \mathbf{\Delta}_{ij}$$

Multi Dimensional Scaling

$$\boldsymbol{\Delta} = \begin{bmatrix} \delta_{00} & \delta_{01} & \cdots & \delta_{0N} \\ \delta_{10} & \delta_{11} & \cdots & \delta_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_{N0} & \delta_{N1} & \cdots & \delta_{NN} \end{bmatrix}$$

• MDS Objective,

$$\hat{\mathbf{Y}} = \operatorname{argmin}_{\mathbf{Y}} \|\mathbf{D} - \boldsymbol{\Delta}\|_{F}.$$

• MDS Objective,

$$\hat{\mathbf{Y}} = \operatorname{argmin}_{\mathbf{Y}} \|\mathbf{D} - \mathbf{\Delta}\|_F.$$

• Element-Wise Matrix norm,

$$\|\mathbf{M}\|_{p,q} = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |m_{ij}|^p\right)^{\frac{p}{q}}\right)^{\frac{1}{q}}$$

$$\operatorname{argmin}_{\mathbf{D}} \|\mathbf{D} - \mathbf{\Delta}\|_{F}^{2} = \operatorname{argmin}_{\mathbf{D}} \operatorname{trace} (\mathbf{D} - \mathbf{\Delta})^{2}$$

$$\begin{aligned} \operatorname{argmin}_{\mathbf{D}} \| \mathbf{D} - \mathbf{\Delta} \|_{F}^{2} &= \operatorname{argmin}_{\mathbf{D}} \operatorname{trace} \left(\mathbf{D} - \mathbf{\Delta} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{A}}} \operatorname{trace} \left(\mathbf{Q} \hat{\mathbf{A}} \mathbf{Q}^{\mathrm{T}} - \mathbf{V} \mathbf{A} \mathbf{V}^{\mathrm{T}} \right)^{2} \end{aligned}$$

$$\begin{aligned} \operatorname{argmin}_{\mathbf{D}} \| \mathbf{D} - \mathbf{\Delta} \|_{F}^{2} &= \operatorname{argmin}_{\mathbf{D}} \operatorname{trace} \left(\mathbf{D} - \mathbf{\Delta} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{A}}} \operatorname{trace} \left(\mathbf{Q} \hat{\mathbf{A}} \mathbf{Q}^{\mathrm{T}} - \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{A}}} \operatorname{trace} \left(\mathbf{V}^{\mathrm{T}} \left(\mathbf{Q} \hat{\mathbf{A}} \mathbf{Q}^{\mathrm{T}} - \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \right) \mathbf{V} \right)^{2} \end{aligned}$$

$$\begin{aligned} \operatorname{argmin}_{\mathbf{D}} \| \mathbf{D} - \mathbf{\Delta} \|_{F}^{2} &= \operatorname{argmin}_{\mathbf{D}} \operatorname{trace} \left(\mathbf{D} - \mathbf{\Delta} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{\Lambda}}} \operatorname{trace} \left(\mathbf{Q} \hat{\mathbf{\Lambda}} \mathbf{Q}^{\mathrm{T}} - \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{\Lambda}}} \operatorname{trace} \left(\mathbf{V}^{\mathrm{T}} \left(\mathbf{Q} \hat{\mathbf{\Lambda}} \mathbf{Q}^{\mathrm{T}} - \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \right) \mathbf{V} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{\Lambda}}} \operatorname{trace} \left(\mathbf{V}^{\mathrm{T}} \mathbf{Q} \hat{\mathbf{\Lambda}} \mathbf{Q}^{\mathrm{T}} \mathbf{V} - \mathbf{V}^{\mathrm{T}} \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \mathbf{V} \right)^{2} \end{aligned}$$

$$\begin{aligned} \operatorname{argmin}_{\mathbf{D}} \| \mathbf{D} - \mathbf{\Delta} \|_{F}^{2} &= \operatorname{argmin}_{\mathbf{D}} \operatorname{trace} \left(\mathbf{D} - \mathbf{\Delta} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{\Lambda}}} \operatorname{trace} \left(\mathbf{Q} \hat{\mathbf{\Lambda}} \mathbf{Q}^{\mathrm{T}} - \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{\Lambda}}} \operatorname{trace} \left(\mathbf{V}^{\mathrm{T}} \left(\mathbf{Q} \hat{\mathbf{\Lambda}} \mathbf{Q}^{\mathrm{T}} - \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \right) \mathbf{V} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{\Lambda}}} \operatorname{trace} \left(\mathbf{V}^{\mathrm{T}} \mathbf{Q} \hat{\mathbf{\Lambda}} \mathbf{Q}^{\mathrm{T}} \mathbf{V} - \mathbf{V}^{\mathrm{T}} \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \mathbf{V} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{\Lambda}}} \operatorname{trace} \left(\mathbf{V}^{\mathrm{T}} \mathbf{Q} \hat{\mathbf{\Lambda}} \mathbf{Q}^{\mathrm{T}} \mathbf{V} - \mathbf{\Lambda} \right)^{2}. \end{aligned}$$

Multi Dimensional Scaling

$$\mathbf{D} = \sum_{i=1}^{d} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathrm{T}},$$
$$\|\mathbf{D} - \mathbf{\Delta}\|_F = \sqrt{\sum_{i=d+1}^{N} \lambda_i^2}$$

• To get the best d dimensional solution we pick the top d eigenvalues

$$\mathbf{D} = \mathbf{Y}\mathbf{Y}^{\mathrm{T}} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathrm{T}}$$

$$egin{aligned} \mathbf{D} &= \mathbf{Y}\mathbf{Y}^{\mathrm{T}} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathrm{T}} \ &= \left(\mathbf{V}\mathbf{\Lambda}^{rac{1}{2}}
ight)\left(\mathbf{\Lambda}^{rac{1}{2}}\mathbf{V}^{\mathrm{T}}
ight) \end{aligned}$$

$$egin{aligned} \mathbf{D} &= \mathbf{Y}\mathbf{Y}^{\mathrm{T}} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathrm{T}} \ &= \left(\mathbf{V}\mathbf{\Lambda}^{rac{1}{2}}
ight)\left(\mathbf{\Lambda}^{rac{1}{2}}\mathbf{V}^{\mathrm{T}}
ight) \ &= \left(\mathbf{V}\mathbf{\Lambda}^{rac{1}{2}}
ight)\left(\mathbf{V}\mathbf{\Lambda}^{rac{1}{2}}
ight)^{\mathrm{T}} \end{aligned}$$
$$egin{aligned} \mathbf{D} &= \mathbf{Y}\mathbf{Y}^{\mathrm{T}} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathrm{T}} \ &= \left(\mathbf{V}\mathbf{\Lambda}^{rac{1}{2}}
ight)\left(\mathbf{\Lambda}^{rac{1}{2}}\mathbf{V}^{\mathrm{T}}
ight) \ &= \left(\mathbf{V}\mathbf{\Lambda}^{rac{1}{2}}
ight)\left(\mathbf{V}\mathbf{\Lambda}^{rac{1}{2}}
ight)^{\mathrm{T}} \ &\Rightarrow \mathbf{Y} = \mathbf{V}\mathbf{\Lambda}^{rac{1}{2}} \end{aligned}$$

Example

	Man	Ox	Lon	Bri	Liv	Birm
Man	0	203	262	224	46	114
Ox	203	0	83	95	217	91
Lon	262	83	0	170	285	161
Bri	224	95	170	0	217	122
Liv	46	217	285	217	0	126
Birm	114	91	161	122	126	0

Example

 $\bullet\,$ In MDS we diagonalise a $N\times N$ matrix

 $\mathbf{Y}^{\mathrm{T}}\mathbf{Y}$

¹see attached notes

 $\bullet\,$ In MDS we diagonalise a $N\times N$ matrix

 $\mathbf{Y}^{\mathrm{T}}\mathbf{Y}$

 $\bullet\,$ In PCA we diagonalise a $D\times D$ matrix

 $\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$

¹see attached notes

 $\bullet\,$ In MDS we diagonalise a $N\times N$ matrix

 $\mathbf{Y}^{\mathrm{T}}\mathbf{Y}$

• In PCA we diagonalise a $D \times D$ matrix

 $\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$

• Rank

$$\mathsf{Rank}\left(\mathbf{Y}^{\mathrm{T}}\mathbf{Y}\right) = \mathsf{Rank}\left(\mathbf{Y}\mathbf{Y}^{\mathrm{T}}\right).$$

¹see attached notes

• We have a method to find a geometrical embedding from a similarity relationship

- We have a method to find a geometrical embedding from a similarity relationship
- a manifold is a topological space that near each point resembles Euclidean space

- We have a method to find a geometrical embedding from a similarity relationship
- a manifold is a topological space that near each point resembles Euclidean space
- ullet \Rightarrow we can *measure* local distances faithfully

- We have a method to find a geometrical embedding from a similarity relationship
- a manifold is a topological space that near each point resembles Euclidean space
- ullet \Rightarrow we can *measure* local distances faithfully
- Learning manifold implies completing similarity relationship

Learning Manifold

Isomap [Tenenbaum et al., 2000]

- 1. Compute local similarity
- 2. Compute shortest path in graph
- 3. Apply MDS

• Compute a distance matrix \boldsymbol{D}

- Compute a distance matrix \boldsymbol{D}
- Convert distance matrix to inner-product (Gram matrix)

- $\bullet\,$ Compute a distance matrix D
- Convert distance matrix to inner-product (Gram matrix)
- Diagonalise inner-produce matrix

- $\bullet\,$ Compute a distance matrix D
- Convert distance matrix to inner-product (Gram matrix)
- Diagonalise inner-produce matrix
- Recover *relative* spatial structure that reflect distance

$$\mathbf{X} = \mathbf{V} \mathbf{\Lambda}^{rac{1}{2}}$$

• Learn how to read distance matrices

- Learn how to read distance matrices
- PCA is your first fprintf(stderr, ...)

- Learn how to read distance matrices
- PCA is your first fprintf(stderr, ...)
- PCA diagonalises the covariance matrix $D \times D$

- Learn how to read distance matrices
- PCA is your first fprintf(stderr, ...)
- PCA diagonalises the covariance matrix $D \times D$
- MDS diagonalises the distance matrix $N\times N$

- Learn how to read distance matrices
- PCA is your first fprintf(stderr, ...)
- PCA diagonalises the covariance matrix $D \times D$
- MDS diagonalises the distance matrix $N\times N$
- You can non-linearise MDS with a non-linear distance measure

Latent Variable Models

- PCA is a global/linear method
- MDS allows for non-linearisation through localised measure

Locality

Generative Mode

$$\mathbf{y}_i = f(\mathbf{x}_i)$$

$$y = f(x)$$

- In unsupervised learning we are given only output
- Task: recover both f and x

- This problem is very ill-posed
- We have to encode a preference towards the solution that we want
- Remember the GLM

$$\hat{\boldsymbol{\beta}} = \operatorname*{argmax}_{\boldsymbol{\beta}} \prod_{i=1}^{N} p(y_i \mid \boldsymbol{\beta}, \mathbf{x}_i) + \lambda \left(\sum_{j=1}^{d} \beta_j^p \right)^{\frac{1}{p}}$$

 $p(\mathbf{w}) \sim \mathcal{N}(\mathbf{0}, \alpha \mathbf{I})$

 $p(\mathbf{X}) \sim \mathcal{N}(\mathbf{0}, \alpha_2 \mathbf{I})$

Principled Incorporation of Bias

• Bayes' Rule

$$p(f, \mathbf{X} \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid f, \mathbf{X})p(f)p(\mathbf{X})}{p(\mathbf{Y})}$$

Principled Incorporation of Bias

• Bayes' Rule

$$p(f, \mathbf{X} \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid f, \mathbf{X})p(f)p(\mathbf{X})}{p(\mathbf{Y})}$$

• Maximum a posteriori estimate (MAP)

$$\{\hat{f}, \hat{\mathbf{X}}\} = \operatorname*{argmax}_{f, \mathbf{X}} \log p(\mathbf{Y} \mid f, \mathbf{X}) + \underbrace{\log p(f) + \log p(\mathbf{X})}_{\mathsf{regularisers}}$$

Principled Incorporation of Bias

• Bayes' Rule

$$p(f, \mathbf{X} \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid f, \mathbf{X})p(f)p(\mathbf{X})}{p(\mathbf{Y})}$$

• Maximum a posteriori estimate (MAP)

$$\{\hat{f}, \hat{\mathbf{X}}\} = \underset{f, \mathbf{X}}{\operatorname{argmax}} \log p(\mathbf{Y} \mid f, \mathbf{X}) + \underbrace{\log p(f) + \log p(\mathbf{X})}_{\text{regularisers}}$$

$$\hat{\boldsymbol{\beta}} = \operatorname*{argmax}_{\boldsymbol{\beta}} \prod_{i=1}^{N} p(y_i \mid \boldsymbol{\beta}, \mathbf{x}_i) + \lambda \left(\sum_{j=1}^{d} \beta_j^p \right)^{\frac{1}{p}}$$

$$p(\mathbf{Y}, \mathbf{W}, \mathbf{X}) = p(\mathbf{Y} | \mathbf{W}, \mathbf{X}) p(\mathbf{X}) p(\mathbf{W})$$
$$p(\mathbf{Y} | \mathbf{W}, \mathbf{X}) = \mathcal{N}(\mathbf{X}\mathbf{W} + \mu, \beta^{-1}\mathbf{I}),$$

- we assume the data is corrupted by Gaussian noise we get a likelihood
- \bullet we assume the mapping to be linear such that $\mathbf{Y}=\mathbf{X}\mathbf{W}$

Example

Example II

Principal Component Analysis²

$$egin{aligned} & V \Lambda \mathbf{V}^{\mathrm{T}} = \mathbf{y}^{\mathrm{T}} \mathbf{y} \ & \mathbf{y} = \sum_{i}^{d} \mathbf{y} \mathbf{V}_{i} \end{aligned}$$

- The above is the solution if $\beta \to \infty$

²Spearman, 1904

- You have seen this explained in two different way
 - Retain variance
 - Gaussian priors
- The statistical model provides a clearer intuition to the assumptions

- You have seen this explained in two different way
 - Retain variance
 - Gaussian priors
- The statistical model provides a clearer intuition to the assumptions
- what about non-linearities

What about non-linear methods

Font Demo

Summary

• Visualisation is key to get insight into high-dimensional data

- Visualisation is key to get insight into high-dimensional data
- Unsupervised learning is inherently ill-posed

- Visualisation is key to get insight into high-dimensional data
- Unsupervised learning is inherently ill-posed
- Solutions can only be interpreted in light of the assumptions/bias that lead to the solution

- Visualisation is key to get insight into high-dimensional data
- Unsupervised learning is inherently ill-posed
- Solutions can only be interpreted in light of the assumptions/bias that lead to the solution
- PCA is a linear (global) model with a clear underlying statistical interpretation

- Visualisation is key to get insight into high-dimensional data
- Unsupervised learning is inherently ill-posed
- Solutions can only be interpreted in light of the assumptions/bias that lead to the solution
- PCA is a linear (global) model with a clear underlying statistical interpretation
- Non-linearisation through MDS can be very useful

EOF

eof