䁶图 UNIVERSITY OF
(1) CAMBRIDGE

Advanced Data Science

Lecture 8 : Visualisation II

Carl Henrik Ek - che29@cam.ac.uk

14th of November, 2022
http://carlhenrik.com

Data Science is Debugging

Distance Matrix

Distance Matrix

Distance Matrix

scipy.spatial.distance.cdist(XA, XB, metric='euclidean',

```
*, out=None, **kwargs)[source])
```

Compute distance between each pair of the two collections of inputs. metricstr or callable, optional The distance metric to use. If a string, the distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'kulczynski1', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.

Dimensionality Reduction

0.98177005	-0.99053874	-0.01683981	-0.3994665	0.12133672
1.16342824	-0.99520027	0.90381171	0.27386304	-1.06091985
-1.90577283	0.91220641	1.74809035	1.66393916	-0.54346161
-0.56907458	0.89406555	-0.17182898	1.81980444	1.8713991
1.53380634	1.20296216	-0.26604579	0.48691598	-1.3871063
-0.95765954	-0.61907303	-1.33657998	0.71134795	1.01014797
1.32466764	0.53453037	-1.55772646	1.55236474	0.84368406
-0.6207868	0.25005863	-0.90101442	0.07198261	0.92843713
0.89584615	0.20860728	0.56883429	0.2793335	0.32354156
0.10053249	-1.01930463	0.71546593	-1.87660674	-1.03507809
-0.54741634	1.42964806	-1.84004808	-0.94952952	-0.31223371

Eigen-decomposition

$$
\begin{aligned}
\mathbf{A} & =\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1} \\
\mathbf{\Lambda} & =\left\{\begin{array}{cc}
0 & i \neq j \\
\lambda_{i} & i=j
\end{array}\right. \\
\mathbf{V} \mathbf{V}^{\mathrm{T}} & =\mathbf{I} \Rightarrow \mathbf{V}^{-1}=\mathbf{V}^{\mathrm{T}}
\end{aligned}
$$

Eigen-decomposition

$$
\mathbf{M}=\sum_{i=1}^{N} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathrm{T}}
$$

- the eigen decomposition means we can write a matrix as a sum of rank one matrices
- all symmetric real matrices have a diagonal matrix that they are similar to

Rank-Nullity Theorem

$$
\operatorname{Rank}(T)+\operatorname{Nullity}(T)=\operatorname{dim}(A)
$$

- $T: A \rightarrow B$ is a map between two vector spaces
- $\operatorname{Rank}(T)$ is the dimensionality of the image of T
- $\operatorname{Nullity}(T)$ is the dimensionality of the kernel of T

Rank-Nullity Theorem

$$
\operatorname{Rank}(T)+\operatorname{Nullity}(T)=\operatorname{dim}(A)
$$

Task Can we find a map T such that kernel of the map is the subspace where the data have no variations?

Task Can we find a map T such that the dimensions are ordered in decreasing order of how much variations the data has?

Rank-Nullity

Principal Component Analysis

$$
\mathbf{Y}^{\mathrm{T}} \mathbf{Y}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}
$$

Principal Component Analysis

- Compute Empirical Covariance Matrix of the data

$$
\mathbf{C}=\mathbf{Y}^{T} \mathbf{Y}
$$

Principal Component Analysis

- Compute Empirical Covariance Matrix of the data

$$
\mathbf{C}=\mathbf{Y}^{T} \mathbf{Y}
$$

- Diagonalise C

$$
\mathbf{C}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}
$$

Principal Component Analysis

- Compute Empirical Covariance Matrix of the data

$$
\mathrm{C}=\mathrm{Y}^{T} \mathbf{Y}
$$

- Diagonalise C

$$
\mathbf{C}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}
$$

- Project Data onto eigenvectors that corresponds to highest variance

$$
\mathbf{X}=\mathbf{Y} \mathbf{V}^{\mathrm{T}}
$$

MoCap

Eigenvectors and Eigenvalues

Matrices

Distances and Inner Products

Distances and Inner Products

$$
\begin{aligned}
\mathbf{D}_{i j}^{2} & =d_{i j}^{2}=\sum_{k=1}^{d}\left(y_{k i}-y_{k j}\right)^{2}=\mathbf{y}_{i}^{\mathrm{T}} \mathbf{y}_{i}+\mathbf{y}_{j}^{\mathrm{T}} \mathbf{y}_{j}-2 \mathbf{y}_{i}^{\mathrm{T}} \mathbf{y}_{j} \\
\mathbf{G}_{i j} & =g_{i j}=\mathbf{y}_{i}^{\mathrm{T}} \mathbf{y}_{j} \\
d_{i j}^{2} & =g_{i i}+g_{j j}-2 g_{i j}
\end{aligned}
$$

- if we assume that the data is centred we can write the Gram matrix as a function of the distance matrix

Distances and Inner Products

Multi Dimensional Scaling [Cox et al., 2008]

- Given a similarity matrix $\boldsymbol{\Delta}$ can we find a vectorial representation such that,

$$
\mathbf{y}_{i}^{\mathrm{T}} \mathbf{y}_{j}=\boldsymbol{\Delta}_{i j}
$$

Multi Dimensional Scaling

$$
\boldsymbol{\Delta}=\left[\begin{array}{cccc}
\delta_{00} & \delta_{01} & \cdots & \delta_{0 N} \\
\delta_{10} & \delta_{11} & \cdots & \delta_{1 N} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{N 0} & \delta_{N 1} & \cdots & \delta_{N N}
\end{array}\right]
$$

Multi Dimensional Scaling

- MDS Objective,

$$
\hat{\mathbf{Y}}=\operatorname{argmin}_{\mathbf{Y}}\|\mathbf{D}-\boldsymbol{\Delta}\|_{F} .
$$

Multi Dimensional Scaling

- MDS Objective,

$$
\hat{\mathbf{Y}}=\operatorname{argmin}_{\mathbf{Y}}\|\mathbf{D}-\boldsymbol{\Delta}\|_{F} .
$$

- Element-Wise Matrix norm,

$$
\|\mathbf{M}\|_{p, q}=\left(\sum_{j=1}^{n}\left(\sum_{i=1}^{m}\left|m_{i j}\right|^{p}\right)^{\frac{p}{q}}\right)^{\frac{1}{q}}
$$

Multi Dimensional Scaling

$\operatorname{argmin}_{\mathbf{D}}\|\mathbf{D}-\boldsymbol{\Delta}\|_{F}^{2}=\operatorname{argmin}_{\mathbf{D}} \operatorname{trace}(\mathbf{D}-\boldsymbol{\Delta})^{2}$

Multi Dimensional Scaling

$$
\begin{aligned}
\operatorname{argmin}_{\mathbf{D}}\|\mathbf{D}-\boldsymbol{\Delta}\|_{F}^{2} & =\operatorname{argmin}_{\mathbf{D}} \operatorname{trace}(\mathbf{D}-\boldsymbol{\Delta})^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\mathbf{\Lambda}}} \operatorname{trace}\left(\mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}}-\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}\right)^{2}
\end{aligned}
$$

Multi Dimensional Scaling

$\operatorname{argmin}_{\mathbf{D}}\|\mathbf{D}-\boldsymbol{\Delta}\|_{F}^{2}=\operatorname{argmin}_{\mathbf{D}} \operatorname{trace}(\mathbf{D}-\boldsymbol{\Delta})^{2}$

$$
\begin{aligned}
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\Lambda}} \operatorname{trace}\left(\mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}}-\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}\right)^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\Lambda}} \hat{\operatorname{trace}}\left(\mathbf{V}^{\mathrm{T}}\left(\mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}}-\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}\right) \mathbf{V}\right)^{2}
\end{aligned}
$$

Multi Dimensional Scaling

$$
\begin{aligned}
\operatorname{argmin}_{\mathbf{D}}\|\mathbf{D}-\boldsymbol{\Delta}\|_{F}^{2} & =\operatorname{argmin}_{\mathbf{D}} \operatorname{trace}(\mathbf{D}-\boldsymbol{\Delta})^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\boldsymbol{\Lambda}}} \operatorname{trace}\left(\mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}}-\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}\right)^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\boldsymbol{\Lambda}}} \operatorname{trace}\left(\mathbf{V}^{\mathrm{T}}\left(\mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}}-\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}\right) \mathbf{V}\right)^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\boldsymbol{\Lambda}}} \operatorname{trace}\left(\mathbf{V}^{\mathrm{T}} \mathbf{Q} \hat{\mathbf{\Lambda}} \mathbf{Q}^{\mathrm{T}} \mathbf{V}-\mathbf{V}^{\mathrm{T}} \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \mathbf{V}\right)^{2}
\end{aligned}
$$

Multi Dimensional Scaling

$$
\begin{aligned}
\operatorname{argmin}_{\mathbf{D}}\|\mathbf{D}-\boldsymbol{\Delta}\|_{F}^{2} & =\operatorname{argmin}_{\mathbf{D}} \operatorname{trace}(\mathbf{D}-\boldsymbol{\Delta})^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\boldsymbol{\Lambda}}} \operatorname{trace}\left(\mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}}-\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}\right)^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\boldsymbol{\Lambda}}} \operatorname{trace}\left(\mathbf{V}^{\mathrm{T}}\left(\mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}}-\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}\right) \mathbf{V}\right)^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\boldsymbol{\Lambda}}} \operatorname{trace}\left(\mathbf{V}^{\mathrm{T}} \mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}} \mathbf{V}-\mathbf{V}^{\mathrm{T}} \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}} \mathbf{V}\right)^{2} \\
& =\operatorname{argmin}_{\mathbf{Q}, \hat{\boldsymbol{\Lambda}}} \operatorname{trace}\left(\mathbf{V}^{\mathrm{T}} \mathbf{Q} \hat{\boldsymbol{\Lambda}} \mathbf{Q}^{\mathrm{T}} \mathbf{V}-\boldsymbol{\Lambda}\right)^{2} .
\end{aligned}
$$

Multi Dimensional Scaling

$$
\begin{array}{r}
\mathbf{D}=\sum_{i=1}^{d} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathrm{T}}, \\
\|\mathbf{D}-\boldsymbol{\Delta}\|_{F}=\sqrt{\sum_{i=d+1}^{N} \lambda_{i}^{2}}
\end{array}
$$

- To get the best d dimensional solution we pick the top d eigenvalues

Multi Dimensional Scaling

$$
\mathbf{D}=\mathbf{Y} \mathbf{Y}^{\mathrm{T}}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}
$$

Multi Dimensional Scaling

$$
\begin{aligned}
\mathbf{D}=\mathbf{Y} \mathbf{Y}^{\mathrm{T}} & =\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}} \\
& =\left(\mathbf{V} \boldsymbol{\Lambda}^{\frac{1}{2}}\right)\left(\boldsymbol{\Lambda}^{\frac{1}{2}} \mathbf{V}^{\mathrm{T}}\right)
\end{aligned}
$$

Multi Dimensional Scaling

$$
\begin{aligned}
\mathbf{D}=\mathbf{Y} \mathbf{Y}^{\mathrm{T}} & =\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}} \\
& =\left(\mathbf{V} \boldsymbol{\Lambda}^{\frac{1}{2}}\right)\left(\boldsymbol{\Lambda}^{\frac{1}{2}} \mathbf{V}^{\mathrm{T}}\right) \\
& =\left(\mathbf{V} \boldsymbol{\Lambda}^{\frac{1}{2}}\right)\left(\mathbf{V} \boldsymbol{\Lambda}^{\frac{1}{2}}\right)^{\mathrm{T}}
\end{aligned}
$$

Multi Dimensional Scaling

$$
\begin{aligned}
\mathbf{D}=\mathbf{Y} \mathbf{Y}^{\mathrm{T}} & =\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}} \\
& =\left(\mathbf{V} \boldsymbol{\Lambda}^{\frac{1}{2}}\right)\left(\boldsymbol{\Lambda}^{\frac{1}{2}} \mathbf{V}^{\mathrm{T}}\right) \\
& =\left(\mathbf{V} \boldsymbol{\Lambda}^{\frac{1}{2}}\right)\left(\mathbf{V} \boldsymbol{\Lambda}^{\frac{1}{2}}\right)^{\mathrm{T}} \\
& \Rightarrow \mathbf{Y}=\mathbf{V} \boldsymbol{\Lambda}^{\frac{1}{2}}
\end{aligned}
$$

Example

	Man	Ox	Lon	Bri	Liv	Birm
Man	0	203	262	224	46	114
Ox	203	0	83	95	217	91
Lon	262	83	0	170	285	161
Bri	224	95	170	0	217	122
Liv	46	217	285	217	0	126
Birm	114	91	161	122	126	0

Example

PCA Equvivalence ${ }^{1}$

- In MDS we diagonalise a $N \times N$ matrix

$$
\mathbf{Y}^{\mathrm{T}} \mathbf{Y}
$$

[^0]
PCA Equvivalence ${ }^{1}$

- In MDS we diagonalise a $N \times N$ matrix

$$
\mathbf{Y}^{\mathrm{T}} \mathbf{Y}
$$

- In PCA we diagonalise a $D \times D$ matrix

$$
\mathbf{Y} Y^{\mathrm{T}}
$$

[^1]
PCA Equvivalence ${ }^{1}$

- In MDS we diagonalise a $N \times N$ matrix

$$
\mathbf{Y}^{\mathrm{T}} \mathbf{Y}
$$

- In PCA we diagonalise a $D \times D$ matrix

$$
Y Y^{T}
$$

- Rank

$$
\operatorname{Rank}\left(\mathbf{Y}^{\mathrm{T}} \mathbf{Y}\right)=\operatorname{Rank}\left(\mathbf{Y} \mathbf{Y}^{\mathrm{T}}\right) .
$$

[^2]
Proximity Graph

- We have a method to find a geometrical embedding from a similarity relationship

Proximity Graph

- We have a method to find a geometrical embedding from a similarity relationship
- a manifold is a topological space that near each point resembles Euclidean space

Proximity Graph

- We have a method to find a geometrical embedding from a similarity relationship
- a manifold is a topological space that near each point resembles Euclidean space
- \Rightarrow we can measure local distances faithfully

Proximity Graph

- We have a method to find a geometrical embedding from a similarity relationship
- a manifold is a topological space that near each point resembles Euclidean space
- \Rightarrow we can measure local distances faithfully
- Learning manifold implies completing similarity relationship

Isomap [Tenenbaum et al., 2000]

1. Compute local similarity
2. Compute shortest path in graph
3. Apply MDS

Multi-Dimensional Scaling

- Compute a distance matrix D

Multi-Dimensional Scaling

- Compute a distance matrix D
- Convert distance matrix to inner-product (Gram matrix)

Multi-Dimensional Scaling

- Compute a distance matrix D
- Convert distance matrix to inner-product (Gram matrix)
- Diagonalise inner-produce matrix

Multi-Dimensional Scaling

- Compute a distance matrix D
- Convert distance matrix to inner-product (Gram matrix)
- Diagonalise inner-produce matrix
- Recover relative spatial structure that reflect distance

$$
\mathrm{X}=\mathrm{V} \boldsymbol{\Lambda}^{\frac{1}{2}}
$$

Summary

- Learn how to read distance matrices

Summary

- Learn how to read distance matrices
- PCA is your first fprintf(stderr, ...)

Summary

- Learn how to read distance matrices
- PCA is your first fprintf(stderr, ...)
- PCA diagonalises the covariance matrix $D \times D$

Summary

- Learn how to read distance matrices
- PCA is your first fprintf(stderr, ...)
- PCA diagonalises the covariance matrix $D \times D$
- MDS diagonalises the distance matrix $N \times N$
- Learn how to read distance matrices
- PCA is your first fprintf(stderr, ...)
- PCA diagonalises the covariance matrix $D \times D$
- MDS diagonalises the distance matrix $N \times N$
- You can non-linearise MDS with a non-linear distance measure

Latent Variable Models

PCA vs MDS

- PCA is a global/linear method
- MDS allows for non-linearisation through localised measure

Generative Model

$$
\mathbf{y}_{i}=f\left(\mathbf{x}_{i}\right)
$$

Unsupervised learning

$$
y=f(x)
$$

- In unsupervised learning we are given only output
- Task: recover both f and x

Unsupervised Learning

Unsupervised Learning

Solution bias

- This problem is very ill-posed
- We have to encode a preference towards the solution that we want
- Remember the GLM

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\beta}, \mathbf{x}_{i}\right)+\lambda\left(\sum_{j=1}^{d} \beta_{j}^{p}\right)^{\frac{1}{p}}
$$

Unsupervised Learning

$$
p(\mathbf{w}) \sim \mathcal{N}(\mathbf{0}, \alpha \mathbf{I})
$$

Unsupervised Learning

Unsupervised Learning

$$
p(\mathbf{X}) \sim \mathcal{N}\left(\mathbf{0}, \alpha_{2} \mathbf{I}\right)
$$

Unsupervised Learning

Unsupervised Learning

Unsupervised Learning

Principled Incorporation of Bias

- Bayes' Rule

$$
p(f, \mathbf{X} \mid \mathbf{Y})=\frac{p(\mathbf{Y} \mid f, \mathbf{X}) p(f) p(\mathbf{X})}{p(\mathbf{Y})}
$$

Principled Incorporation of Bias

- Bayes' Rule

$$
p(f, \mathbf{X} \mid \mathbf{Y})=\frac{p(\mathbf{Y} \mid f, \mathbf{X}) p(f) p(\mathbf{X})}{p(\mathbf{Y})}
$$

- Maximum a posteriori estimate (MAP)

$$
\{\hat{f}, \hat{\mathbf{X}}\}=\underset{f, \mathbf{X}}{\operatorname{argmax}} \log p(\mathbf{Y} \mid f, \mathbf{X})+\underbrace{\log p(f)+\log p(\mathbf{X})}_{\text {regularisers }}
$$

Principled Incorporation of Bias

- Bayes' Rule

$$
p(f, \mathbf{X} \mid \mathbf{Y})=\frac{p(\mathbf{Y} \mid f, \mathbf{X}) p(f) p(\mathbf{X})}{p(\mathbf{Y})}
$$

- Maximum a posteriori estimate (MAP)

$$
\{\hat{f}, \hat{\mathbf{X}}\}=\underset{f, \mathbf{X}}{\operatorname{argmax}} \log p(\mathbf{Y} \mid f, \mathbf{X})+\underbrace{\log p(f)+\log p(\mathbf{X})}_{\text {regularisers }}
$$

- GLM

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\beta}, \mathbf{x}_{i}\right)+\lambda\left(\sum_{j=1}^{d} \beta_{j}^{p}\right)^{\frac{1}{p}}
$$

$$
\begin{aligned}
p(\mathbf{Y}, \mathbf{W}, \mathbf{X}) & =p(\mathbf{Y} \mid \mathbf{W}, \mathbf{X}) p(\mathbf{X}) p(\mathbf{W}) \\
p(\mathbf{Y} \mid \mathbf{W}, \mathbf{X}) & =\mathcal{N}\left(\mathbf{X W}+\mu, \beta^{-1} \mathbf{I}\right)
\end{aligned}
$$

- we assume the data is corrupted by Gaussian noise we get a likelihood
- we assume the mapping to be linear such that $\mathbf{Y}=\mathbf{X W}$

Example II

Principal Component Analysis ${ }^{2}$

$$
\begin{aligned}
\mathbf{V} \Lambda \mathbf{V}^{\mathrm{T}} & =\mathbf{y}^{\mathrm{T}} \mathbf{y} \\
\mathbf{y} & =\sum_{i}^{d} \mathbf{y} \mathbf{V}_{i}
\end{aligned}
$$

- The above is the solution if $\beta \rightarrow \infty$

[^3]
Principal Component Analysis

- You have seen this explained in two different way
- Retain variance
- Gaussian priors
- The statistical model provides a clearer intuition to the assumptions

Principal Component Analysis

- You have seen this explained in two different way
- Retain variance
- Gaussian priors
- The statistical model provides a clearer intuition to the assumptions
- what about non-linearities

What about non-linear methods

Example

Font Demo

Summary

Summary

- Visualisation is key to get insight into high-dimensional data

Summary

- Visualisation is key to get insight into high-dimensional data
- Unsupervised learning is inherently ill-posed
- Visualisation is key to get insight into high-dimensional data
- Unsupervised learning is inherently ill-posed
- Solutions can only be interpreted in light of the assumptions/bias that lead to the solution
- Visualisation is key to get insight into high-dimensional data
- Unsupervised learning is inherently ill-posed
- Solutions can only be interpreted in light of the assumptions/bias that lead to the solution
- PCA is a linear (global) model with a clear underlying statistical interpretation
- Visualisation is key to get insight into high-dimensional data
- Unsupervised learning is inherently ill-posed
- Solutions can only be interpreted in light of the assumptions/bias that lead to the solution
- PCA is a linear (global) model with a clear underlying statistical interpretation
- Non-linearisation through MDS can be very useful

EOF

[^0]: ${ }^{1}$ see attached notes

[^1]: ${ }^{1}$ see attached notes

[^2]: ${ }^{1}$ see attached notes

[^3]: ${ }^{2}$ Spearman, 1904

