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scipy.spatial.distance.cdist(XA, XB, metric='euclidean',

*, out=None, **kwargs) [source])

Compute distance between each pair of the two collections of inputs.

metricstr or callable, optional The distance metric to use. If a string, the
distance function can be ‘braycurtis’, ‘canberra’,
‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’,
‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’,
‘ jensenshannon’, ‘kulczynskil’, ‘mahalanobis’,
‘matching’, ‘minkowski’, ‘rogerstanimoto’,
‘russellrao’, ‘seuclidean’, ‘sokalmichener’,

‘sokalsneath’, ‘sqgeuclidean’, ‘yule’.



Dimensionality Reduction
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Eigen-decomposition

A=VAV!
a={ 17
Ai 1=

vvi=1 = v1=vT



Eigen-decomposition

N
M=) A\vivy.
=1

e the eigen decomposition means we can write a matrix as a sum of rank one

matrices

e all symmetric real matrices have a diagonal matrix that they are similar to



Rank-Nullity Theorem

Rank(7") 4+ Nullity(T") = dim(A)

e T': A — B is a map between two vector spaces
e Rank(7) is the dimensionality of the image of T'
e Nullity(7") is the dimensionality of the kernel of T



Rank-Nullity Theorem

Rank(7") 4+ Nullity(T") = dim(A)

Task Can we find a map 7' such that kernel of the map is the subspace
where the data have no variations?

Task Can we find a map 7" such that the dimensions are ordered in
decreasing order of how much variations the data has?
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Principal Component Analysis
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Principal Component Analysis

e Compute Empirical Covariance Matrix of the data

C=Y"Y
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Principal Component Analysis

e Compute Empirical Covariance Matrix of the data
C=Y"Y

e Diagonalise C'
C=VAV!
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Principal Component Analysis

e Compute Empirical Covariance Matrix of the data
C=Y"Y

e Diagonalise C'
C=VAV!

e Project Data onto eigenvectors that corresponds to highest variance

X =YVT

13
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Distances and Inner Products

T~




Distances and Inner Products

d

D} =d} =) (yri— k)’ =¥iyi +¥; 55 — 2915
k=1

Gij = 0i; = ¥, ¥;
d?j — G+ 955 — 2015

e if we assume that the data is centred we can write the Gram matrix as a
function of the distance matrix
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Multi Dimensional Scaling [Cox et al.,

e Given a similarity matrix A can we find a vectorial representation such that,

yiy;= Ay

20



Multi Dimensional Scaling

doo Oo1 -+ Oon
di0 011 -+ 01N

ono ON1 -+ ONN
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Multi Dimensional Scaling

e MDS Objective,

A

Y = argminy ||D — Al .
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Multi Dimensional Scaling

e MDS Objective,

Y = argminy ||D — Al .

e Element-Wise Matrix norm,

n m s
IM|lpq = ( Imijlp>
j=1 \i=1

Q=
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Multi Dimensional Scaling

argminp||D — A% = argminptrace (D — A)?
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Multi Dimensional Scaling

argming||D — Al|% = argminptrace (D — A)?

A i T\ 2
= argming, 4 trace (QAQ — VAV )
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Multi Dimensional Scaling

argming ||D — A% = argminptrace (D — A)?
- 2
— argming, 4 trace (QAQT . VAVT)

= argming, 4 trace (VT (QAQT . VAVT) V)2
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Multi Dimensional Scaling

argminp||D — A% = argminptrace (D — A)?
- 2
— argming, ; trace (QAQT - VAVT)
. 2
= argming, 4 trace (VT (QAQT — VAVT) V)

@ 2
— argming, 4 trace (VTQAQTV _ VTVAVTV)
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Multi Dimensional Scaling

argminp||D — A% = argminptrace (D — A)?
= argming, 4 trace <QAQT — VAVT)2
— argming 4 trace (VT (QAQT VAVT) V)2
= argming, 4 trace (VTQAQTV — VTVAVTV)2
(

= argming, 4 trace VTQAQTV A) :
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Multi Dimensional Scaling

e To get the best d dimensional solution we pick the top d eigenvalues

24



Multi Dimensional Scaling

D=YYT=VAVT
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Multi Dimensional Scaling

D=YY!'=vAvV"T
- (val) (aiv?)
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Multi Dimensional Scaling

D=YY'=vAV"
- (va?) (a4v7)

- (val) ()’
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Multi Dimensional Scaling

D=YY!'=vAV"?
- (vat) (atv7)

- (v) (v’

—~ Y = VA:
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Man Ox Lon Bri Liv Birm
Man 0 203 262 224 46 114
Ox 203 0 83 095 217 91
Lon 262 83 0 170 285 161
Bri 224 95 170 0 217 122
Liv 46 217 285 217 0 126
Birm 114 91 161 122 126 0
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Example
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PCA Equvivalence !

e In MDS we diagonalise a N x N matrix

Yy

1see attached notes
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PCA Equvivalence !

e In MDS we diagonalise a N x N matrix
Y'Y
e In PCA we diagonalise a D x D matrix

YYT

1see attached notes
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PCA Equvivalence !

e In MDS we diagonalise a N x N matrix
Y'Y

e In PCA we diagonalise a D x D matrix
YY?'

e Rank
Rank (YTY) = Rank (YYT) )

1see attached notes
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Proximity Graph

e We have a method to find a geometrical embedding from a similarity
relationship
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Proximity Graph

e We have a method to find a geometrical embedding from a similarity
relationship

e a manifold is a topological space that near each point resembles Euclidean
space
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Proximity Graph

e We have a method to find a geometrical embedding from a similarity
relationship

e a manifold is a topological space that near each point resembles Euclidean
space

e = we can measure local distances faithfully
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Proximity Graph

We have a method to find a geometrical embedding from a similarity
relationship

a manifold is a topological space that near each point resembles Euclidean

space
e = we can measure local distances faithfully

Learning manifold implies completing similarity relationship

29
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Isomap [Tenenbaum et al., ]

1. Compute local similarity
2. Compute shortest path in graph
3. Apply MDS
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Isomap Solution
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Multi-Dimensional Scaling

e Compute a distance matrix D

33



Multi-Dimensional Scaling

e Compute a distance matrix D

e Convert distance matrix to inner-product (Gram matrix)
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Multi-Dimensional Scaling

e Compute a distance matrix D
e Convert distance matrix to inner-product (Gram matrix)

e Diagonalise inner-produce matrix
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Multi-Dimensional Scaling

Compute a distance matrix D

Convert distance matrix to inner-product (Gram matrix)

Diagonalise inner-produce matrix

Recover relative spatial structure that reflect distance

X = VA2
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e Learn how to read distance matrices
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e Learn how to read distance matrices

e PCA is your first fprintf (stderr, ... )
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e Learn how to read distance matrices
e PCA is your first fprintf (stderr, ... )

e PCA diagonalises the covariance matrix D x D
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Learn how to read distance matrices

PCA is your first fprintf (stderr, ... )

PCA diagonalises the covariance matrix D x D

MDS diagonalises the distance matrix N x N
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Learn how to read distance matrices

PCA is your first fprintf (stderr, ... )

PCA diagonalises the covariance matrix D x D

MDS diagonalises the distance matrix N x N

You can non-linearise MDS with a non-linear distance measure

34



Latent Variable Models




PCA vs MDS

e PCA is a global/linear method

e MDS allows for non-linearisation through localised measure

35






Generative Model
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Unsupervised learning

y = f(z)

e In unsupervised learning we are given only output

e Task: recover both f and x

38



Unsupervised Learning
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Unsupervised Learning
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Solution bias

e This problem is very ill-posed
e We have to encode a preference towards the solution that we want

e Remember the GLM

B =

N d
8= arg’gnaXHp(yi |8, %)+ (D 68F
i=1

J=1
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Unsupervised Learning

p(W) ~ N(07 aI) 42



Unsupervised Learning

43



Unsupervised Learning

Hm
2= L
o
2= e
Y -]
1 1 [] 1

00 25 50 75 100 125 150 175 200

p(X) ~ N(0, aoI) "



Unsupervised Learning

Y
2- _________  — — — — — — — i — — — — —
————————— (] T — — 0 — — S — — T —p — S — —
3 0| ——— e { L p—— — — — — — — — S — —
————————— Prr—— e e — e ———
2 s —— e * — — — — — — —— — —
H-
1 | 1 [] [] [ 1 | []
0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5 20.0
X

45



Unsupervised Learning
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Unsupervised Learning
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Principled Incorporation of Bias

e Bayes' Rule
p(Y | f, X)p(f)p(X)
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Principled Incorporation of Bias

e Bayes' Rule

~p(Y | £, X)p(f)p(X)

e Maximum a posteriori estimate (MAP)

{/,.X} = argmexlogp(Y | £,X) + logp(f) + logp(X)

regularisers
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Principled Incorporation of Bias

e Bayes' Rule

~p(Y | £, X)p(f)p(X)

e Maximum a posteriori estimate (MAP)

{/,.X} = argmexlogp(Y | £,X) + logp(f) + logp(X)

regularisers

e GLM

1
P

N d
I@:argglaXHp(yi | /Baxi)+)‘ Zﬁf
=1 3=1
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Linear Model

p(Y, W, X) = p(Y|W, X)p(X)p(W)
p(YIW,X) = N(XW + p, 67'T),

e we assume the data is corrupted by Gaussian noise we get a likelihood

e we assume the mapping to be linear such that Y = XW

49



50



° e
.. .. "a
o ‘e .
.oc « o-
. * % °
. LY o
o-oo °* °
°
R .
- . ®
oo : oo PR %o )

51



Principal Component Analysis 2

e The above is the solution if § — oo

2Spearman, 1904
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Principal Component Analysis

e You have seen this explained in two different way

e Retain variance

e Gaussian priors

e The statistical model provides a clearer intuition to the assumptions
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Principal Component Analysis

e You have seen this explained in two different way

e Retain variance

e Gaussian priors

e The statistical model provides a clearer intuition to the assumptions

e what about non-linearities
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What about non-linear methods
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Font Demo
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https://ndfcampbell.org/research/fonts/#interactive-2d-font-manifold-demonstration

Summary




e Visualisation is key to get insight into high-dimensional data
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e Visualisation is key to get insight into high-dimensional data

Unsupervised learning is inherently ill-posed

Solutions can only be interpreted in light of the assumptions/bias that lead
to the solution

PCA is a linear (global) model with a clear underlying statistical
interpretation

Non-linearisation through MDS can be very useful
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