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Data Science is Debugging
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Code

scipy.spatial.distance.cdist(XA, XB, metric='euclidean',
*, out=None, **kwargs)[source])

Compute distance between each pair of the two collections of inputs.

metricstr or callable, optional The distance metric to use. If a string, the
distance function can be ‘braycurtis’, ‘canberra’,
‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’,
‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’,
‘jensenshannon’, ‘kulczynski1’, ‘mahalanobis’,
‘matching’, ‘minkowski’, ‘rogerstanimoto’,
‘russellrao’, ‘seuclidean’, ‘sokalmichener’,
‘sokalsneath’, ‘sqeuclidean’, ‘yule’.
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Dimensionality Reduction



High Dimensional

0.98177005 -0.99053874 -0.01683981 -0.3994665 0.12133672
1.16342824 -0.99520027 0.90381171 0.27386304 -1.06091985

-1.90577283 0.91220641 1.74809035 1.66393916 -0.54346161
-0.56907458 0.89406555 -0.17182898 1.81980444 1.8713991
1.53380634 1.20296216 -0.26604579 0.48691598 -1.3871063

-0.95765954 -0.61907303 -1.33657998 0.71134795 1.01014797
1.32466764 0.53453037 -1.55772646 1.55236474 0.84368406
-0.6207868 0.25005863 -0.90101442 0.07198261 0.92843713
0.89584615 0.20860728 0.56883429 0.2793335 0.32354156
0.10053249 -1.01930463 0.71546593 -1.87660674 -1.03507809

-0.54741634 1.42964806 -1.84004808 -0.94952952 -0.31223371
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Eigen-decomposition

A = VΛV−1

Λ =

{
0 i ̸= j

λi i = j

VVT = I ⇒ V−1 = VT.
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Eigen-decomposition

M =
N∑
i=1

λiviv
T
i .

• the eigen decomposition means we can write a matrix as a sum of rank one
matrices

• all symmetric real matrices have a diagonal matrix that they are similar to
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Rank-Nullity Theorem

Rank(T ) + Nullity(T ) = dim(A)

• T : A → B is a map between two vector spaces

• Rank(T ) is the dimensionality of the image of T

• Nullity(T ) is the dimensionality of the kernel of T
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Rank-Nullity Theorem

Rank(T ) + Nullity(T ) = dim(A)

Task Can we find a map T such that kernel of the map is the subspace
where the data have no variations?

Task Can we find a map T such that the dimensions are ordered in
decreasing order of how much variations the data has?
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Rank-Nullity
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Principal Component Analysis

YTY = VΛVT
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Principal Component Analysis

• Compute Empirical Covariance Matrix of the data

C = YTY

• Diagonalise C

C = VΛVT

• Project Data onto eigenvectors that corresponds to highest variance

X = YVT
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MoCap
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Eigenvectors and Eigenvalues
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Matrices
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Distances and Inner Products
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Distances and Inner Products

D2
ij = d2ij =

d∑
k=1

(yki − ykj)
2 = yT

i yi + yT
j yj − 2yT

i yj

Gij = gij = yT
i yj

d2ij = gii + gjj − 2gij

• if we assume that the data is centred we can write the Gram matrix as a
function of the distance matrix
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Distances and Inner Products
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Multi Dimensional Scaling [Cox et al., 2008]

• Given a similarity matrix ∆ can we find a vectorial representation such that,

yT
i yj = ∆ij
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Multi Dimensional Scaling

∆ =


δ00 δ01 · · · δ0N
δ10 δ11 · · · δ1N
...

... . . . ...
δN0 δN1 · · · δNN


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Multi Dimensional Scaling

• MDS Objective,

Ŷ = argminY∥D−∆∥F .

• Element-Wise Matrix norm,

∥M∥p,q =

 n∑
j=1

(
m∑
i=1

|mij|p
) p

q

 1
q
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Multi Dimensional Scaling

argminD∥D−∆∥2F = argminDtrace (D−∆)2
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Multi Dimensional Scaling

argminD∥D−∆∥2F = argminDtrace (D−∆)2

= argminQ,Λ̂trace
(
QΛ̂QT −VΛVT

)2
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Multi Dimensional Scaling

D =
d∑

i=1

λiviv
T
i ,

∥D−∆∥F =

√√√√ N∑
i=d+1

λ2
i

• To get the best d dimensional solution we pick the top d eigenvalues
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Multi Dimensional Scaling

D = YYT = VΛVT
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Multi Dimensional Scaling

D = YYT = VΛVT

=
(
VΛ

1
2

)(
Λ

1
2VT

)
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Multi Dimensional Scaling

D = YYT = VΛVT

=
(
VΛ

1
2

)(
Λ

1
2VT

)
=
(
VΛ

1
2

)(
VΛ

1
2

)T

⇒ Y = VΛ
1
2
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Example

Man Ox Lon Bri Liv Birm
Man 0 203 262 224 46 114
Ox 203 0 83 95 217 91
Lon 262 83 0 170 285 161
Bri 224 95 170 0 217 122
Liv 46 217 285 217 0 126
Birm 114 91 161 122 126 0
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Example
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PCA Equvivalence 1

• In MDS we diagonalise a N ×N matrix

YTY

• In PCA we diagonalise a D ×D matrix

YYT

• Rank
Rank

(
YTY

)
= Rank

(
YYT) .

1see attached notes
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Proximity Graph

• We have a method to find a geometrical embedding from a similarity
relationship

• a manifold is a topological space that near each point resembles Euclidean
space

• ⇒ we can measure local distances faithfully

• Learning manifold implies completing similarity relationship
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Learning Manifold
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Isomap [Tenenbaum et al., 2000]

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2321

1. Compute local similarity

2. Compute shortest path in graph

3. Apply MDS
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Isomap Solution
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Multi-Dimensional Scaling

• Compute a distance matrix D

• Convert distance matrix to inner-product (Gram matrix)

• Diagonalise inner-produce matrix

• Recover relative spatial structure that reflect distance

X = VΛ
1
2
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Summary

• Learn how to read distance matrices

• PCA is your first fprintf(stderr, ... )

• PCA diagonalises the covariance matrix D ×D

• MDS diagonalises the distance matrix N ×N

• You can non-linearise MDS with a non-linear distance measure
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Latent Variable Models



PCA vs MDS

• PCA is a global/linear method

• MDS allows for non-linearisation through localised measure
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Locality
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Generative Model

yi = f(xi)
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Unsupervised learning

y = f(x)

• In unsupervised learning we are given only output

• Task: recover both f and x
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Unsupervised Learning
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Unsupervised Learning
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Solution bias

• This problem is very ill-posed

• We have to encode a preference towards the solution that we want

• Remember the GLM

β̂ = argmax
β

N∏
i=1

p(yi | β,xi) + λ

 d∑
j=1

βp
j

 1
p
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Unsupervised Learning

p(w) ∼ N (0, αI) 42



Unsupervised Learning
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Unsupervised Learning

p(X) ∼ N (0, α2I) 44



Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Principled Incorporation of Bias

• Bayes’ Rule

p(f,X | Y) =
p(Y | f,X)p(f)p(X)

p(Y)

• Maximum a posteriori estimate (MAP)

{f̂ , X̂} = argmax
f,X

log p(Y | f,X) + log p(f) + log p(X)︸ ︷︷ ︸
regularisers

• GLM

β̂ = argmax
β

N∏
i=1

p(yi | β,xi) + λ

 d∑
j=1

βp
j

 1
p
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Linear Model

p(Y,W,X) = p(Y|W,X)p(X)p(W)

p(Y|W,X) = N (XW + µ, β−1I),

• we assume the data is corrupted by Gaussian noise we get a likelihood

• we assume the mapping to be linear such that Y = XW
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Example

50



Example II
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Principal Component Analysis 2

VΛVT = yTy

y =
d∑
i

yVi

• The above is the solution if β → ∞

2Spearman, 1904
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Principal Component Analysis

• You have seen this explained in two different way
• Retain variance
• Gaussian priors

• The statistical model provides a clearer intuition to the assumptions

• what about non-linearities
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What about non-linear methods
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Example

Font Demo
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https://ndfcampbell.org/research/fonts/#interactive-2d-font-manifold-demonstration


Summary



Summary

• Visualisation is key to get insight into high-dimensional data

• Unsupervised learning is inherently ill-posed

• Solutions can only be interpreted in light of the assumptions/bias that lead
to the solution

• PCA is a linear (global) model with a clear underlying statistical
interpretation

• Non-linearisation through MDS can be very useful
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