䁶图 UNIVERSITY OF
(1) CAMBRIDGE

Advanced Data Science

Lecture 9 : Statistical Learning Outlook

Carl Henrik Ek - che29@cam.ac.uk

16th of November, 2022
http://carlhenrik.com

Introduction

PCA and MDS

Principal Component Analysis diagonalises a $D \times D$ matrix

PCA and MDS

Principal Component Analysis diagonalises a $D \times D$ matrix

- finds a geometrical representation where the covariance is diagonal

PCA and MDS

Principal Component Analysis diagonalises a $D \times D$ matrix

- finds a geometrical representation where the covariance is diagonal

Multi-Dimensional-Scaling diagonalises a $N \times N$ matrix

Principal Component Analysis diagonalises a $D \times D$ matrix

- finds a geometrical representation where the covariance is diagonal

Multi-Dimensional-Scaling diagonalises a $N \times N$ matrix

- finds a geometrical representation that "matches" a distance matrix

Principal Component Analysis diagonalises a $D \times D$ matrix

- finds a geometrical representation where the covariance is diagonal

Multi-Dimensional-Scaling diagonalises a $N \times N$ matrix

- finds a geometrical representation that "matches" a distance matrix
- equivivalent to PCA with euclidian distance

Principal Component Analysis diagonalises a $D \times D$ matrix

- finds a geometrical representation where the covariance is diagonal

Multi-Dimensional-Scaling diagonalises a $N \times N$ matrix

- finds a geometrical representation that "matches" a distance matrix
- equivivalent to PCA with euclidian distance
- can be non-linearised with a non-linear distance measure

Generative Model

$$
\mathbf{y}_{i}=f\left(\mathbf{x}_{i}\right)
$$

Unsupervised Learning

Unsupervised Learning

III posed

- This problem is very ill-posed
- We have to encode a preference towards the solution that we want

Generalised Linear Model: Learning

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\beta}, \mathbf{x}_{i}\right)
$$

Generalised Linear Model: Learning

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(y_{i} \mid \boldsymbol{\beta}, \mathbf{x}_{i}\right)+\lambda\left(\sum_{j=1}^{d} \beta_{j}^{p}\right)^{\frac{1}{p}}
$$

$$
\begin{aligned}
y_{i} & =\mathbf{w}^{\mathrm{T}} \mathbf{x} \\
p(\mathbf{w}) & \sim \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \alpha \mathbf{I})
\end{aligned}
$$

$$
p(\mathbf{X}) \sim \mathcal{N}\left(\mathbf{X} \mid \mathbf{0}, \alpha_{2} \mathbf{I}\right)
$$

$$
p(\mathbf{X}) \sim \mathcal{N}\left(\mathbf{0}, \alpha_{2} \mathbf{I}\right)
$$

$$
\begin{aligned}
& \{\hat{\mathbf{X}}, \hat{\mathbf{w}}\}=\underset{\hat{\mathbf{X}}, \hat{\mathbf{W}}}{\operatorname{argmax}}(\underbrace{\mathcal{L}(\mathbf{Y}, \mathbf{X}, \mathbf{w})}_{\log p(\mathbf{Y} \mid \mathbf{X}, \mathbf{w})}+\gamma_{1} \log p(\mathbf{w})+\gamma_{2} \log p(\mathbf{X}))
\end{aligned}
$$

Unsupervised Learning

$$
p(\mathbf{w}) \sim \mathcal{N}(\mathbf{0}, \alpha \mathbf{I})
$$

$p(\mathbf{X}) \sim \mathcal{N}\left(\mathbf{0}, \alpha_{2} \mathbf{I}\right)$

Today

Statistical learning machine learning is inherently ill-posed

Today

Statistical learning machine learning is inherently ill-posed
Interpretation our "predictions" can only ever be interpreted in light of the knowledge we put in

Statistical learning machine learning is inherently ill-posed
Interpretation our "predictions" can only ever be interpreted in light of the knowledge we put in
Knowledge how can we incorporate knowledge in a principled manner

Knowledge/Assumption in the Data Science Pipeline

access what data did I acquire
assess how did I prepare/treat the data
address which model to choose, how did I set the parameters of the model

Learning

Variables

Deterministic Variable

Code

int $\mathrm{x}=3$;
float y = 3.14;

Stochastic Variable

$$
\begin{gathered}
x \sim p(x) \\
y \sim \mathcal{N}(0,1)
\end{gathered}
$$

Encoding Knowledge

Basic Probabilities

Rules of Probablity

Sum Rule

$$
p(x)=\sum_{\forall y \in \mathcal{Y}} p(x, y)
$$

Product Rule

$$
p(x, y)=p(x \mid y) p(y)
$$

Marginalisation

$$
p(\mathcal{D})=\int p(\mathcal{D} \mid \theta) p(\theta) \mathrm{d} \theta
$$

Marginalisation

$$
p(\mathcal{D})=\int p(\mathcal{D} \mid \theta) p(\theta) \mathrm{d} \theta
$$

Marginalisation

$$
p(\mathcal{D})=\int p(\mathcal{D} \mid \theta) p(\theta) \mathrm{d} \theta
$$

Marginalisation

$$
p(\mathcal{D})=\int p(\mathcal{D} \mid \theta) \underbrace{p(\theta) \mathrm{d} \theta}_{\mathrm{d} \hat{\theta}}
$$

Marginalisation

Marginalisation

Marginalisation Model Linear

Marginalisation Model Basis

Marginalisation Model

Model Selection [Mackay, 1991]

$3 ?$

Bayes' "Rule"

$$
p(x, y)=p(y \mid x) p(x)
$$

Bayes' "Rule"

$$
\begin{aligned}
& p(x, y)=p(y \mid x) p(x) \\
& p(x, y)=p(x \mid y) p(y)
\end{aligned}
$$

Bayes' "Rule"

$$
\begin{aligned}
p(x, y) & =p(y \mid x) p(x) \\
p(x, y) & =p(x \mid y) p(y) \\
p(x \mid y) p(y) & =p(y \mid x) p(x)
\end{aligned}
$$

Bayes' "Rule"

$$
\begin{aligned}
p(x, y) & =p(y \mid x) p(x) \\
p(x, y) & =p(x \mid y) p(y) \\
p(x \mid y) p(y) & =p(y \mid x) p(x) \\
p(x \mid y) & =\frac{p(y \mid x) p(x)}{p(y)}
\end{aligned}
$$

Bayes' "Rule"

$$
\begin{aligned}
p(x, y) & =p(y \mid x) p(x) \\
p(x, y) & =p(x \mid y) p(y) \\
p(x \mid y) p(y) & =p(y \mid x) p(x) \\
p(x \mid y) & =\frac{p(y \mid x) p(x)}{p(y)} \\
& =\frac{p(y \mid x) p(x)}{\sum_{x} p(y \mid x) p(x)}
\end{aligned}
$$

Bayes' Rule Semantics

$$
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}
$$

Likelihood for a specific parameter setting how does the observation manifest itself

Prior what do I believe/know about the parameters
Evidence what is the probability of a specific set of data
Posterior what is the probability for different parameter settings given a set of data

Regularisation

Ad-hoc Regularisation maximum likelihood or regularised error

$$
\{\hat{\mathbf{X}}, \hat{\mathbf{w}}\}=\underset{\hat{\mathbf{X}}, \hat{\mathbf{w}}}{\operatorname{argmax}}(\underbrace{\mathcal{L}(\mathbf{Y}, \mathbf{X}, \mathbf{w})}_{\log p(\mathbf{Y} \mid \mathbf{X}, \mathbf{w})}+\gamma_{1} \log p(\mathbf{w})+\gamma_{2} \log p(\mathbf{X}))
$$

Principled Regularisation posterior distribution

$$
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{\int p(\mathcal{D} \mid \theta) p(\theta) \mathrm{d} \theta}
$$

Integration is a key step in inference, where it is encountered when averaging over the many states of the world consistent with observed data. Indeed, a provocative Bayesian view is that integration is the single challenge separating us from systems that fully automate statistics. More speculatively still, such systems may even exhibit artificial intelligence (ai)

- Universal Artificial Intelligence - M. Hutter

The challenge of Marginalisation ${ }^{1}$

${ }^{1}$ or machine learning as a whole

Laplace Integration

"Nature laughs at the difficulties of integrations"

- Simon Laplace

Markov Random Field

Markov Random Field

$$
p(\mathbf{y})=\int p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})=\sum_{i}^{N} p\left(\mathbf{y} \mid \mathbf{x}_{i}\right) p\left(\mathbf{x}_{i}\right)
$$

- x_{i} is a specific binary images

22905932035003264424982540711028779924646158308390547680551234 50544313385107740379157387758658057318635099533562444284837656 64089003406615457341269160953934651531316272895970961099648619 54866367416569442839488693306484701733713508133208092688099524 07079715398039210502009557335794366205566676730638553849508752 96774709909681539187886137857513890052212385415364000233552517 92309415514808127836484674744961578781252261713953420063416790 75520576304970776016746818912261453204962575441115371836944715 68955050738825457212739435174816507334054019330445298798029650 87466180307289634103591124634109184832439049686890853942279882

96554063613709807896975047594167461331023628146001054998291892 88504480339660384078781965270447157474368533868315778800203562 14741210341558715729680198052518982409725023084881200238736500 20272835722752488449634887364713943526031912848227248826190464 84769659489283823966930525191241687725175533908692952453783598 28370235435165885369163710464894220310701508827933380526429979 25998158019209229038981588717128926097153382729134531621865313 97860858154170551598275153444713326325034781836776513703100360 97938897585753779083035010667766548311999605347475370343426743 82534000538109978641872766097082093090380663944422789696913654 89002023222850825449795309678706304437009833849217731493021674

25506248717508338594766791895095680602732346712939153259990811 48939130328420650376019730541961524092173016464047938013691439 66718432036059811187775136277557250792266837423597968228683403 40891384751547673727271229322228878852083218796660305975797728 87782987686468159942599573254088749600987758158350339985951647 51217086975807460294738428018338592485796034133919973077413533 68694919563685166113776742372081780419191068702807890339161440 99126661387307752660057804524225302437317858452782485229505751 37610939444647228055539117717164315059230286413698788578331540 17822394957907816501100598872745959467831004471989549305375741 90738099064718222518825147478490657161167548497523333968812279

49114751199656354594624473392897828672753085721621023943443062 01449072780844668538929442057198697060107876495003418069047901 81420256733072612769503473201816461274039931292984401423199725 43409301707634660377253374196629143599599348813527131013125346 35085302320378163021153281388668643014293963947674718567131663 50435955804654725436951706056632361702749907044372801683830358 69913652994643262056428393431504053504888101754720253838078891 92539392721103826349328251385543816977282386956487514065578882 34747518138465426828255208381310069117625217360239526199430454 34643503384285930316545135079767510717638042435127189839307791 20937657434512013867455548820224148073627378623609980111113076

06401895470442072037617747470820243516866198003957569584101060 80466135629650012014664567714155778664863093617634553900426210 91101672089100758253488015840017224071067971558665492397885347 66072563138170840191279476853418537351879721277733449450507730 31895050404703449225069038735569656865708529073446623478695245 65431225174791144666136702087360842313671545657762822696089905 68021682799022786745086696738347816102210900054189076993778672 77059648206586073751433641713011744511704016132334906338900377 17774725809448332425459899738225646744609738390155521757096422 26193756923409669234790206301159076383049447801135255878205328 27526432990876482679910153249074963538068771014944040060242262

38044977426824019042331532260139373317250133351983527123955504 22922110105171367715419816662500131430427440349387764312765762 48703173056875662841084751660001324414350620739304183073837766 89725029037116499677338189435789237255328232566165426546313829

11359993958629376

Numbers

- Possible black and white 3 Megapixel images
$2^{3145728}$

Numbers

- Possible black and white 3 Megapixel images

$$
2^{3145728}
$$

- Number of atoms in the universe

$$
10^{80} \approx\left(2^{\frac{10}{3}}\right)^{80} \approx 2^{267}
$$

Numbers

- Possible black and white 3 Megapixel images

$$
2^{3145728}
$$

- Number of atoms in the universe

$$
10^{80} \approx\left(2^{\frac{10}{3}}\right)^{80} \approx 2^{267}
$$

- Age of the universe in seconds

$$
4.35 \cdot 10^{17} \approx 2^{59}
$$

Intractability

- Computational intractability: there are too many states to sum over (image segmentation)
- Analytic: no closed form exists for the distribution (unsupervised learning)

Intractability

- Computational intractability: there are too many states to sum over (image segmentation)
- Analytic: no closed form exists for the distribution (unsupervised learning)
- The double annoyance: machine learning is not just ill-posed, the computations needed for making it well posed is intractable

The No-Free Lunch Theorem

- There exists no universal learner

The No-Free Lunch Theorem

- There exists no universal learner
- For every learner there exist a task on which it fails

The No-Free Lunch Theorem

- There exists no universal learner
- For every learner there exist a task on which it fails
- Every algorithm that learns something useful does so by assumptions

The No-Free Lunch Theorem

- There exists no universal learner
- For every learner there exist a task on which it fails
- Every algorithm that learns something useful does so by assumptions
- There is no free lunch algorithm

Every Algorithm Does this

Explicit vs. Tacit Knowledge

Dangers of misattribution

Data centric thinking

"You need to put Machine Learning in the context of data (and humans)"

The Datascience Loop

Summary

Summary

- Machine learning problems are inherently ill-posed

Summary

- Machine learning problems are inherently ill-posed
- We need to introduce knowledge/assumptions
- Machine learning problems are inherently ill-posed
- We need to introduce knowledge/assumptions
- The results can only be interpreted in light of the knowledge/assumptions
- Machine learning problems are inherently ill-posed
- We need to introduce knowledge/assumptions
- The results can only be interpreted in light of the knowledge/assumptions
- Use methods that you can explain as you need to communicate with domain experts

Alongside your implementation you will provide a short repository overview describing how you have implemented the different parts of the project and where you have placed those parts in your code repository. You will submit your code alongside a version of this notebook that will allow your examiner to understand and reconstruct the thinking behind your analysis.

What are we looking for?

Remember the notebook you create should tell a story, any code that is not critical to that story can safely be placed into the associated analysis library and imported for use (structured as given in the Fynesse template)

What are we not looking for?

Lack of narrative why are you doing what you are doing?

What are we not looking for?

Lack of narrative why are you doing what you are doing?
Spaghetti code encapsulate code, clean up code

What are we not looking for?

Lack of narrative why are you doing what you are doing?
Spaghetti code encapsulate code, clean up code
The perfect prediction what does this even mean?

What are we not looking for?

Lack of narrative why are you doing what you are doing?
Spaghetti code encapsulate code, clean up code
The perfect prediction what does this even mean?
ML Ninjas we will not give additional marks for "advanced methods"

