
Advanced Data Science
Generalised Linear Models

Carl Henrik Ek∗

November 15, 2021

Abstract

In this worksheet we will look at linear models. We will show a general framework for formulating
models where the we have a set of response variables that we want to explain through a linear relation-
ship from a set of explanatory variables. While many relationships are non-linear in nature it is often
challenging to interpret and explain the results from such a model. Therefore, linear models remains
very important as they provide a nice trade-off between explanation of the data while at the same time
providing interpretable semantics.

We have a set of explanatory variables x ∈ X and a set of response variables y ∈ Y. The data is provided to
us in pairs D = {xi,yi}Ni=1 where xi and yi are in correspondence. Our aim is to build a model that allows
us to predict the response variable yi from its corresponding explanatory variable xi.

Linear regression makes the assumption that the relationship between the response variable and the explana-
tory variable can be written as a linear combination. Furthermore, it assumes that the observations of the
response variable have been corrupted by an additive Gaussian noise process,

yi =

d∑
i=1

βixid + ε,

ε ∼ N (0, σ2).

(1)

While both the explanatory and response variable are deterministic, due to the noise corrupting the obser-
vations, our predictions under the model are random. In order to extract a point estimate we therefore take
the expected value,

E[yi | xi] = E

[
d∑
i=1

βixid + ε

]

= E

[
d∑
i=1

βixid

]
+ E[ε]

=

d∑
i=1

βixid + 0.

(2)

Traditionally the linear regression model above is motivated by an additive noise assumption that corrupts
the observed response. An equivalent explanation is to absorb the noise directly into the response variable

∗che29@cam.ac.uk

1

and consider it a linear model of a normal distributed response,

yi =

d∑
i=1

βixid + ε,

yi + ε =

d∑
i=1

βixid,

ŷi =

d∑
i=1

βixid,

ŷi ∼ N (yi, σ
2) = N

(
d∑
i=1

βixid, σ
2

)
,

(3)

where, as we previously derived, the linear predictor directly parametrises the mean or the first moment of
the random response variable.

If we want to generalise the setting we can think of scenarios where the response variable follows a different
distribution this could be a Bernoulli distributed response as in binary classification or Poisson distributed if
we are describing discrete events. In specific we will look at models where the first moment of the response
variable can be parametrised as a function of a linear combination of the explanatory variables,

g(E[yi | xi]) =
d∑
i=1

βixid, (4)

where the function g(·) is known as a link-function connecting the expected value and the linear predictor1.
While the above formulation is the one that is most commonly used in the statistics literature, in a machine
learning setting we can think of a tranformation of a linear mapping as,

E[yi | xi] = g−1(

d∑
i=1

βixid), (5)

if you are familiar with simple compositional function models such as neural networks you can see how these
are recursive formulations of similar structures2.

The class of models of models that can be described using Eq. 4 are commonly referred to as Generalised
linear models (GLM) McCullagh et al., 1989 where the generalisation comes from the fact that we consider
the response variable to follow a Exponential Dispersion Family distribution 3. The family is rich class of
probability distributions that contains most of the distributions that you should be familiar working with.
Each distribution is defined through two parameters, the location parameter and a scale parameter. The
link function plays the role of "linking" the value of the linear predictor to the location parameter of the
distribution. Many classical statistical models can be written in the language of generalised linear models
in Table 1 a list of models that falls into the category is shown. Each model is characterised by three
different components, an exponential dispersion family distribution of the response, a link function and a
linear predictor from the explanatory variables.

The exponential dispersion family can be written on the following canonical form,

f(y; θ, φ) = e
θy−b(θ)
a(φ)

+c(y,φ), (6)

1for the linear regression case above the link function is the identity
2An article that describes neural networks in the light of the models we will describe can be found here https:

//towardsdatascience.com/glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL.
3https://en.wikipedia.org/wiki/Exponential_dispersion_model

Page 2

https://towardsdatascience.com/glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL
https://towardsdatascience.com/glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL
https://en.wikipedia.org/wiki/Exponential_dispersion_model

Model Response Variable Link Explanatory Variable
Linear Regression Normal Identity Continuous
Logistic Regression Binomial Logit Mixed
Poisson Regression Poisson Log Mixed
ANOVA Normal Identity Categorical
ANCOVA Normal Identity Mixed
Loglinear Poisson Log Categorical
Multinomial response Multinomial Generalized Logit Mixed

Table 1: Specific instances of Generalized linear Model URL.

where θ is the location and φ the scale parameter respectively. A special instantiation of is the Gaussian
distribution,

f(y;µ, σ2) = e
µy− 1

2
µ2

σ2
− y2

2σ2
− 1

2 ln(2πσ2) (7)

where we can identify,
θ = µ

φ = σ2

b(θ) =
1

2
θ2

a(φ) = φ

c(y, φ) =
y2

2φ
− 1

2
ln(2πφ)

(8)

The benefit of writing the distribution on the general form is that we can easily derive a general expression
for both the first and the second moment of the predictive distribution,

E[y | x] = ∂

∂θ
b(θ)

V[y | x] = a(φ)
∂2

∂θ2
b(θ).

(9)

This means that given a GLM we can compute predictions and our uncertainty about those predictions in
closed form. We will now proceed to look at how we can fit these models to data and learn the parameters
β that connects the explanatory variables with the response.

1 Learning Generalised Linear Models
Fitting the GLM models described above to data implies learning the parameters β of the linear predictor.
We will do so by finding the maximum likelihood estimate. By specifying the distribution of the response
variable we have in effect specified a likelihood of each individual data-point. To reach the joint likelihood of
each response variable we will make the assumption that each observed response is conditionally independent
given the parameters and the explanatory variables. This leads to the following objective function,

β̂ = argmax
β

N∏
i=1

p(yi | xi,β). (10)

GLM models are very well studied in the literature and many different highly efficient approaches exists for
fitting the parameters to data. While this is an interesting topic in itself it is beyond the scope of this course.
Instead we will put our trust in the very well documented library https://www.statsmodels.org rather
than implementing this ourselves.

Page 3

https://online.stat.psu.edu/stat504/lesson/6/6.1
https://www.statsmodels.org

Below the code for implementing two separate GLM models is shown. The data is count data and the most
suitable model would be a Poisson regression model for this type. In addition we also include a standard
Gaussian linear model with a single parameter parametrising the slope of the line.

Code

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm

generate data
x = np.array([[i] for i in np.random.choice(range(1,10), 20)])
y = np.array([np.exp(i) + np.random.normal(0,0.25*np.exp(i),1)[0] for i in x])

make sure that the values are positive
y[y<0] = 0

create models
m_poisson = sm.GLM(y,x, family=sm.families.Poisson())
m_poisson_results = m_poisson.fit()

m_gaussian = sm.GLM(y,x, family=sm.families.Gaussian())
m_gaussian_results = m_gaussian.fit()

prediction
x_pred = np.arange(1,11).reshape(-1,1)
y_pred = m_poisson_results.get_prediction(x_pred).summary_frame(alpha=0.05)

y_pred_gaussian = m_gaussian_results.get_prediction(x_pred).summary_frame(alpha=0.05)

plot results
fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)

plt.scatter(x,y,marker='X',color='blue',edgecolor='black',s=100,alpha=0.5,zorder=1)

plt.plot(x_pred,y_pred['mean'],color='red',linewidth=3.0,zorder=2)
plt.plot(x_pred,y_pred['mean_ci_lower'], color='red',linestyle='--',zorder=2)
plt.plot(x_pred,y_pred['mean_ci_upper'], color='red',linestyle='--',zorder=2)

plt.plot(x_pred,y_pred_gaussian['mean'],color='cyan',linewidth=3.0,zorder=2)
plt.plot(x_pred,y_pred_gaussian['mean_ci_lower'], color='cyan',linestyle='--',zorder=2)
plt.plot(x_pred,y_pred_gaussian['mean_ci_upper'], color='cyan',linestyle='--',zorder=2)

plt.tight_layout()

The important part of the code above is the m_poisson = sm.GLM(y,x, family=sm.families.Poisson())
call where we specify the distribution of the of the response variable. Statsmodels currently implements
the following distributions, Binomial, Gamma, Gaussian, InverseGaussian, NegativeBinomial, Poisson,
Tweedie which should give you a rich playground of models to work with.

Page 4

Figure 1: The figure above shows the output of fitting a Poisson regression model in red and the Gaussian
model in cyan. The dotted lines shows the 95% confidence interval for the parameters of the fit. As we can
see the fit is (not surprisingly) much worse for the Gaussian model compared to the Poisson.

2 Basis-function Models
In the framework we have described above the linear prediction is directly on the explanatory variables.
However we can generalise this slightly if we instead want to perform the regression over a set of basis
functions. In statistics we often refer to the matrix of the explanatory variables as the design matrix of the
data. We can easily "design" a matrix that maps the explanatory variables to a "feature space" and then
perform the regression over this domain instead. In Figure 1 the cyan plot uses only a single parameter in its
prediction and is therefore only able to parametrise lines that intersect at (0, 0), in order to also parametrise
the intersection of the line in the model we require to expand the input domain with a constant one as,

X =

x0 1
x1 1
...

...
xN 1

 .

Using the above as the explanatory variables we will be able to fit both the intersection and the slope.
However, we can take this concept further, and generalise this to do regression over a different expanded
explanatory space. Say that we know that the relationship between the response and the explanatory
variables is,

y = β0 sin(x) + β1 sin(
x2

40
) + β2x.

We can now create a new design matrix that includes all the functions that we need and apply the GLM
framework as before,

X =

sin(x0) sin(

x2
0

40) x0

sin(x1) sin(
x2
1

40) x1
...

...
...

sin(xN) sin(
x2
N

40) xN

 .

Page 5

Below we will implement this using the OLS model which is just a Gaussian response and an identity link
function. The motivation for using OLS rather than GLM is that the former provides easier means of analysing
predictions.

Code

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm

np.random.seed(42)

x = np.linspace(0,15,50)
y = 0.2*np.sin(x) + 0.5*np.sin(x**2/40) + 0.05*x
y += 0.05*np.random.randn(x.shape[0])

m_linear = sm.OLS(y,x)
results = m_linear.fit()

design = np.concatenate((np.sin(x).reshape(-1,1),
np.sin(x**2/40).reshape(-1,1), x.reshape(-1,1)),axis=1)

m_linear_basis = sm.OLS(y,design)
results_basis = m_linear_basis.fit()

x_pred = np.linspace(-5,20,200).reshape(-1,1)
design_pred = np.concatenate((np.sin(x_pred), np.sin(x_pred**2/40), x_pred),axis=1)
y_pred_linear = results.get_prediction(x_pred).summary_frame(alpha=0.05)
y_pred_linear_basis = results_basis.get_prediction(design_pred).summary_frame(alpha=0.05)

fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)
ax.scatter(x,y,zorder=2)
ax.plot(x_pred, y_pred_linear['mean'], color='red',linestyle='--',zorder=1)
ax.plot(x_pred, y_pred_linear['obs_ci_lower'],color='red',linestyle='-',zorder=1)
ax.plot(x_pred, y_pred_linear['obs_ci_upper'],color='red',linestyle='-',zorder=1)
ax.fill_between(x_pred.flatten(), y_pred_linear['obs_ci_lower'],

y_pred_linear['obs_ci_upper'],color='red',alpha=0.3,zorder=1)

ax.plot(x_pred, y_pred_linear_basis['mean'], color='cyan',linestyle='--',zorder=1)
ax.plot(x_pred, y_pred_linear_basis['obs_ci_lower'],color='cyan',

linestyle='-',zorder=1)
ax.plot(x_pred, y_pred_linear_basis['obs_ci_upper'],color='cyan',

linestyle='-',zorder=1)
ax.fill_between(x_pred.flatten(), y_pred_linear_basis['obs_ci_lower'],

y_pred_linear_basis['obs_ci_upper'],color='cyan',alpha=0.3,zorder=1)

plt.tight_layout()

If we look at the actual values of the β that the method returns Tab ?? we can see that the approach recovers
the values of the coefficients used to generate the data.

Page 6

Figure 2: The figure above shows fitting a linear Gaussian model to a non-linear function. The prediction
in red shows the model where the design matrix is directly on the explanatory variables while the cyan uses
a design matrix of non-linear functions.

Code

print(results_basis.summary())

coef std err
x1 0.2155 0.009
x2 0.4956 0.010
x3 0.0482 0.001

Furthermore, if we look at the log-likelihood of the two models we can see that it is substantially higher
for the second models compared to the first. This indicates, as we can see visually, that the second design
matrix results in a much better fit to the data.

While the example above worked well maybe it felt a bit contrived as we basically needed to know the
function a-priori. So how about

Question 1

What happens if you expand the design matrix with a sin(x**2/20) and a sin(x**3) term? Why
do you get the results that you get?

Question 2

What happens if you create a design matrix as follows,

y = β0 sin(x) + β1 sin(
x2

40
) + β2x+ β0(− sin(x)).

Explain why you get the coefficients you do.

Page 7

Code

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm

np.random.seed(42)

x = np.linspace(0,15,50)
y = 0.2*np.sin(x) + 0.5*np.sin(x**2/40) + 0.05*x
y += 0.05*np.random.randn(x.shape[0])

m_linear = sm.OLS(y,x)
results = m_linear.fit()

design = np.concatenate((np.sin(x).reshape(-1,1),
np.sin(x**2/40).reshape(-1,1), x.reshape(-1,1),
-np.sin(x).reshape(-1,1)),axis=1)

m_linear_basis = sm.OLS(y,design)
results_basis = m_linear_basis.fit()

x_pred = np.linspace(-5,20,200).reshape(-1,1)
design_pred = np.concatenate((np.sin(x_pred), np.sin(x_pred**2/40), x_pred,

-np.sin(x_pred)),axis=1)
y_pred_linear = results.get_prediction(x_pred).summary_frame(alpha=0.05)
y_pred_linear_basis = results_basis.get_prediction(design_pred).summary_frame(alpha=0.05)

fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)
ax.scatter(x,y,zorder=2)
ax.plot(x_pred, y_pred_linear['mean'], color='red',linestyle='--',zorder=1)
ax.plot(x_pred, y_pred_linear['obs_ci_lower'],color='red',linestyle='-',zorder=1)
ax.plot(x_pred, y_pred_linear['obs_ci_upper'],color='red',linestyle='-',zorder=1)
ax.fill_between(x_pred.flatten(), y_pred_linear['obs_ci_lower'],

y_pred_linear['obs_ci_upper'],color='red',alpha=0.3,zorder=1)

ax.plot(x_pred, y_pred_linear_basis['mean'], color='cyan',linestyle='--',zorder=1)
ax.plot(x_pred, y_pred_linear_basis['obs_ci_lower'],color='cyan',

linestyle='-',zorder=1)
ax.plot(x_pred, y_pred_linear_basis['obs_ci_upper'],color='cyan',

linestyle='-',zorder=1)
ax.fill_between(x_pred.flatten(), y_pred_linear_basis['obs_ci_lower'],

y_pred_linear_basis['obs_ci_upper'],color='cyan',alpha=0.3,zorder=1)

plt.tight_layout()

As you can see from the the last example if we have multiple possible explanations we end up with a model
where there are several symmetric explanations that cannot be differentiated under the objective function.
To overcome we have to encode a preference to the solution we want.

Page 8

2.1 Regularisation
In order to encode a preference towards specific solutions we will include an additional term in the objective
that does only depend on the parameters β. This is commonly done using a Lp-norm,

β̂ = argmax
β

N∏
i=1

p(yi | xi,β) + α

 d∑
j=1

βpj

 1
p

. (14)

The most commonly used two norms is the L2 which is referred to as ridge-regression as it will encode a
preference towards solutions where the parameters take equal large values and L1 which is referred to as
lasso as it prefers solutions that "homes" in on a few active parameters to explain the data. In Figure 3 you
can see the regularisation surface for the two norms.

Figure 3: The above plot shows the regularisation surfaces of L2 in blue and L1 regularisation in red.

Question 3

Why does the two regularisations presented above "prefer" different solutions?

In statsmodels we can use the regularisation above by changing the call to fit the model from fit to
fit_regularised. Taking two additional scalar parameters alpha and L1_wt where the former sets the
strength of regularizer and the latter balances the L1 and L2 regularization.

Page 9

Code

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm

np.random.seed(42)

x = np.linspace(0,15,50)
y = 0.2*np.sin(x) + 0.5*np.sin(x**2/40) + 0.05*x
y += 0.05*np.random.randn(x.shape[0])

design = np.concatenate((np.sin(x).reshape(-1,1),
np.sin(x**2/40).reshape(-1,1), x.reshape(-1,1),
np.sin(x**2/20).reshape(-1,1),
np.sin(x**3).reshape(-1,1)),axis=1)

m_linear_basis = sm.OLS(y,design)
results_basis_0 = m_linear_basis.fit_regularized(alpha=0.10,L1_wt=0.0)
results_basis_1 = m_linear_basis.fit_regularized(alpha=0.10,L1_wt=0.3)
results_basis_2 = m_linear_basis.fit_regularized(alpha=0.10,L1_wt=0.6)
results_basis_3 = m_linear_basis.fit_regularized(alpha=0.10,L1_wt=1.0)

x_pred = np.linspace(-5,20,200).reshape(-1,1)
design_pred = np.concatenate((np.sin(x_pred), np.sin(x_pred**2/40),

x_pred,np.sin(x_pred**2/20).reshape(-1,1),
np.sin(x_pred**3).reshape(-1,1)),axis=1)

y_pred_0 = results_basis_0.predict(design_pred)
y_pred_1 = results_basis_1.predict(design_pred)
y_pred_2 = results_basis_2.predict(design_pred)
y_pred_3 = results_basis_3.predict(design_pred)

fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)
ax.scatter(x,y,zorder=2)

ax.plot(x_pred, y_pred_0, color='red', linestyle='--', zorder=1)
ax.plot(x_pred, y_pred_1, color='orange', linestyle='--', zorder=1)
ax.plot(x_pred, y_pred_2, color='magenta', linestyle='--', zorder=1)
ax.plot(x_pred, y_pred_3, color='cyan', linestyle='--', zorder=1)

plt.tight_layout()

2.2 Localised Basis Functions
Another way to think about designing a set of basis functions is to make them connected to the data, we
could think about placing a non-linear transformation of each point

yi =

N∑
j=1

βjφ(xj ,xi)

φ(xj ,xi) = e−
(xi−xj)

T(xi−xj)

`2

(15)

Page 10

Figure 4: The above plot shows the results of applying different levels of regularisation, where the red
solution is L2 and the cyan is L1 and the orange and magenta are different combinations of the two.

As we can see from Figure 5 the interpretation of the solution for the localised basis function model changes
slightly. What we can now say is something similar to, "how important is each of the training data points
for prediction". Especially interesting is the very strongly regularised solution shown in cyan. This can be
interpreted as "if we want to predict the data, which is the single most representative point". The notion
of a localised basis function can through this interpretation provide a rich explanation that is often very
interpretable.

The type of data-centric basis functions that we explained above are very commonly used and if continue
your study of machine learning during the year you will see a lot more of these basis functions as they are
the foundation of a large range of different models from Support Vector Machines Vapnik, 1999 to Gaussian
processes Rasmussen et al., 2006. Importantly as they solve an N × N regression problem the crucial
ingredient is how do we regularise to solution space so that we can recover a solution.

3 Tick
You should now try out the model framework that we described above on a classic machine learning data-set
called the Motorcycle Impact Data Silverman, 1985. You can download the data-set from here. We can load
the data-set using pandas csv import,

Page 11

https://r-data.pmagunia.com/dataset/r-dataset-package-mass-mcycle

Figure 5: The left pane of the figure above shows the fit of the model using a basis function located at each
data-point. The right pane shows the actual parameter values associated with the different regularisation
strategies as above.

Code

import numpy as np
import matplotlib.pyplot as plt
from pandas import read_csv

df = read_csv('/tmp/dataset-72001.csv')
x = np.array(df.values)[:,0]
y = np.array(df.values)[:,1]

fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)

ax.scatter(x,y)

Now try to use the framework that we have derived to explain the data-set above. There is no right or wrong
answer here, what we are looking for is a motivation of why you have made the choices that you have made
and how this effects the conclusions that you can draw.

Things to think about,

• would it make sense to split up the data-set in different regions and fit separate models?

• what is the criteria that you split the data using?

• what would be a sensible design matrix?

• what GLM models would make sense to fit?

During the tick-session we will ask you a few questions on how you have reasoned when fitting the data.
Again, what we are looking for is motivation not "the best fit".

Page 12

Figure 6: The figure above shows the motorcycle impact data-set. The data-set is challenging as the
characteristics of the response changes over the input-domain.

4 Conclusions
This has been quite a short introduction to a set of very useful models. We have cut quite a few corners
theoretically but importantly this is something that we have to do when working as data-scientist. We need
to be able to apply models while there is still some uncertainty in how they work and be able to translate
this uncertainty to how we interpret the results that we get. You are by no means expected to be experts
on GLMs at all but you should be able to use them.

The next part of your challenge is now to include the models that we have built up and use them in the
coursework. Try to first visualise the data, make a clear narrative of why you are selecting a specific model
and try to use the tools that we derived her in order to provide context to the predictions that you make.

The statsmodel package gives you a rich set of tools that you should be able to include directly into your
project. Importantly, remember that the most important thing is to be able to say why a model does what
it does not necessarily choosing the right model.

During the lecture Neil mentioned the idea that what separates statisticians from machine learners is that
the former cares about β while the machine learners cares about ŷ4. If you look at the statmodels package
this concept becomes very clear. Using the GLM code as we did in the first exercise doesn’t actually provide
us with the uncertainty in the predictions only in the parameters. It was because of this we changed from
the GLM model class to OLS when using the basis functions.

References
McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. London, UK: Chapman Hall / CRC:
Chapman Hall / CRC.

Rasmussen, Carl Edward and Christopher K I Williams (2006). Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press.

Silverman, B. W. (1985). “Some Aspects of the Spline Smoothing Approach To Non-Parametric Regression
Curve Fitting”. In: Journal of the Royal Statistical Society: Series B (Methodological) 47.1, pp. 1–21. doi:
10.1111/j.2517-6161.1985.tb01327.x.
4the predictions

Page 13

https://doi.org/10.1111/j.2517-6161.1985.tb01327.x

Vapnik, Vladimir N (1999). The Nature of Statistical Learning Theory.

Page 14

	Learning Generalised Linear Models
	Basis-function Models
	Regularisation
	Localised Basis Functions

	Tick
	Conclusions

